mass spectrometry identification
Recently Published Documents


TOTAL DOCUMENTS

247
(FIVE YEARS 65)

H-INDEX

32
(FIVE YEARS 4)

Author(s):  
Alfredo Cabrera-Orefice ◽  
Alisa Potter ◽  
Felix Evers ◽  
Johannes F. Hevler ◽  
Sergio Guerrero-Castillo

Complexome profiling (CP) is a state-of-the-art approach that combines separation of native proteins by electrophoresis, size exclusion chromatography or density gradient centrifugation with tandem mass spectrometry identification and quantification. Resulting data are computationally clustered to visualize the inventory, abundance and arrangement of multiprotein complexes in a biological sample. Since its formal introduction a decade ago, this method has been mostly applied to explore not only the composition and abundance of mitochondrial oxidative phosphorylation (OXPHOS) complexes in several species but also to identify novel protein interactors involved in their assembly, maintenance and functions. Besides, complexome profiling has been utilized to study the dynamics of OXPHOS complexes, as well as the impact of an increasing number of mutations leading to mitochondrial disorders or rearrangements of the whole mitochondrial complexome. Here, we summarize the major findings obtained by this approach; emphasize its advantages and current limitations; discuss multiple examples on how this tool could be applied to further investigate pathophysiological mechanisms and comment on the latest advances and opportunity areas to keep developing this methodology.


2022 ◽  
Vol 8 (1) ◽  
pp. 73
Author(s):  
Arnaud Jabet ◽  
Anne-Cécile Normand ◽  
Alicia Moreno-Sabater ◽  
Jacques Guillot ◽  
Veronica Risco-Castillo ◽  
...  

Online MALDI-TOF mass spectrometry applications, such as MSI-2, have been shown to help identify dermatophytes, but recurrent errors are still observed between phylogenetically close species. The objective of this study was to assess different approaches to reduce the occurrence of such errors by adding new reference spectra to the MSI-2 application. Nine libraries were set up, comprising an increasing number of spectra obtained from reference strains that were submitted to various culture durations on two distinct culture media: Sabouraud gentamicin chloramphenicol medium and IDFP Conidia medium. The final library included spectra from 111 strains of 20 species obtained from cultures on both media collected every three days after the appearance of the colony. The performance of each library was then analyzed using a cross-validation approach. The spectra acquisitions were carried out using a Microflex Bruker spectrometer. Diversifying the references and adding spectra from various culture media and culture durations improved identification performance. The percentage of correct identification at the species level rose from 63.4 to 91.7% when combining all approaches. Nevertheless, residual confusion between close species, such as Trichophyton rubrum, Trichophyton violaceum and Trichophyton soudanense, remained. To distinguish between these species, mass spectrometry identification should take into account basic morphological and/or clinico-epidemiological features.


Antibiotics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 4
Author(s):  
Vinicius de Queiroz Albuquerque ◽  
Maria Janeila Carvalho Soares ◽  
Maria Nágila Carneiro Matos ◽  
Rafaela Mesquita Bastos Cavalcante ◽  
Jesús Alberto Pérez Guerrero ◽  
...  

The aim of this study was to evaluate the phytochemical profile of Cinnamomum zeylanicum essential oil (CZEO) and their antimicrobial and antibiofilm activity against Staphylococcus strains isolated from canine otitis. First, the CZEO chemical composition was determined by gas chromatography-mass spectrometry (CG-MS). External otitis samples collected from dogs were submitted to staphylococcal isolation, followed by MALDI-TOF mass spectrometry identification. The antimicrobial action was tested against the isolates using the disk-diffusion and microdilution methods. The antibiofilm activity was evaluated by CZEO-based concentrations, subMIC for biofilm formation and supraMIC against preformed biofilm, quantified by crystal violet (CV) staining and CFU counting. The chemical analysis revealed that (E)-cinnamaldehyde, eugenol and (E)-cinnamyl acetate were the main compounds in the CZEO, representing 77.42, 8.17 and 4.50%, respectively. Two strains of three different species, S. saprophyticus, S. schleiferi and S. pseudintermedius, were identified. The disk-diffusion test showed an inhibitory zone diameter, ranging from 34.0 to 49.5 mm, while the MIC and MBC values were around 500 and 1000 µg/mL. SubMIC demonstrated an inhibition on biofilm formation against 4 out the 6 strains tested. On mature biofilm, the CZEO-based supraMIC groups had slightly change on biomass, however, the biofilm cell viability decreased the CFU in 3 magnitude orders.


2021 ◽  
Vol 12 ◽  
Author(s):  
Anaëlle Muggeo ◽  
Jeanne-Marie Perotin ◽  
Audrey Brisebarre ◽  
Sandra Dury ◽  
Valérian Dormoy ◽  
...  

Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory lung disease characterized by airflow limitation. This chronic respiratory disease represents the third leading cause of death worldwide. Alteration of the airway microbiota has been reported to be associated with exacerbation frequency in COPD, but its role on the symptoms in patients at stable state is still incompletely described. This study aimed to determine whether bacteria isolated in sputum can be associated with the clinical features of COPD patients within stable state. Our study highlights, for the first time, that altered microbiota with Enterobacterales is associated with pejorative clinical symptoms in stable COPD patients. The airway microbiota of 38 patients was analyzed using an extended culture approach and mass spectrometry identification. Cluster analysis by principal coordinate analysis of the bacterial communities showed that the patients could be classified into three distinct clusters in our cohort. The clusters showed no differences in proportions of the phylum, but one of them was associated with a high prevalence of Enterobacterales (71.4% in cluster 1 vs. 0% in cluster 3), loss of microbiota diversity, and higher bacterial load (107 vs. 105 CFU/ml, respectively) and characterized by predominant cough and impact on mental health. These novel findings, supported by further studies, could lead to modifying the processing of COPD sputum in the everyday practice of clinical microbiology laboratories.


2021 ◽  
pp. 339333
Author(s):  
Filip Duša ◽  
Jiří Šalplachta ◽  
Marie Horká ◽  
Kamila Lunerová ◽  
Kateřina Rosenbergová ◽  
...  

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 387-388
Author(s):  
Kotenkova Elena ◽  
Irina M Chernukha ◽  
Leonid I Kovalyov

Abstract Physiologically active and pure small tissue specific proteins are in demand in various fundamental and applied areas due to its bioactive properties. It is known that proteins can aggregate, as well as form a highly concentrated layer at the border of the filtration membrane or adhere to it, which significantly interferes with filtration. To eliminate these effects, protein-peptide extracts are recommended to be diluted, as well as using special agents, among them amino acids are more suitable for food industry. The purpose of the study is to develop the isolation and purification of proteins with molecular weight lower 50kDa from porcine hearts and aortas, using different amino acids and its combination. It was previously revealed, that family of fatty acid binding proteins (FABP) is one of the most stable and physiologically active protein in such raw materials. The final technology includes extraction, centrifugation, dilution of extract, diafiltration, lyophilization, dissolving in a small volume of distilled water, dialization and final drying. Concentration of 1.0% glycine and 0.1M proline in both diluted extract and exchange solution was revealed to be most effective to prevent protein aggregation. Dialysates were dried lyophilically and O’Farrell 2DE-electrophoresis with MALDI-TOF MS and MS/MS mass spectrometry identification were used. No proteins of 50kDa and bigger were detected. Proteins of lipid metabolism, peroxiredoxin 2, transgelins etc. with molecular weight lower 50kDa were found. The developed technology allows increasing cardiac and adipocytic isoforms of FABP family content. Cardiac isoform was previously identified in raw material, while adipocytic was newly detected. Adipocytic isoform content is lower than cardiac one; therefore, it was not detected in raw material, but application of complexed diafiltration technique led to increasing its content in dialysate. The developed technology can be used for separation and purification of animal proteins in native and stable forms.


Author(s):  
Franz Zeppetzauer ◽  
Richard Nadányi ◽  
Birgit Kamm ◽  
Robert Putz ◽  
Anton Lisý ◽  
...  

Enormous quantities of softwood and hardwood tree bark are generated yearly in the pulp and woodworking industry. Chemical compounds which can be found in bark extracts have important biological properties and therefore a high potential for using in the production of special formulations. In the present study, extraction of Picea abies bark with organosolv solvents was investigated to achieve a high yield of desirable compounds. For the extraction four different solvent ratios of ethanol and water were applied. The temperature range of extraction was set between 40 and 100 °C and stirring velocity of 400 rpm. Extractions were performed with a solid/liquid ratio of 1:20. Yields of phenolics, flavonoids and tannins were determined using gallic acid for total phenolic content (TPC), quercetin for total flavonoid content (TFC) and tannic acid for total tannins content (TTC) as calibration compounds. Qualitative analysis of phenolic constituents was performed after their derivatization, by gas chromatography coupled with mass spectrometry identification. The total yield of bark extract of 14.75 wt.% was achieved by using an ethanol/water ratio of 50% (v/v) and a temperature of 100 °C. Gas chromatography results show 9 aromatic carboxylic acids as phenolic acids and quercetin and (+)-catechin as flavonoid compounds. Highest concentrations of TPC = 3.21 mg gallic acid equivalent/g, TCF = 0.62 mg quercetin equivalent/g and TTC = 0.84 tannic acid equivalent/g were determined at the same process conditions by photometric method. This study determined the conditions for organosolv extraction of useful compounds and suggests that some of extractives, e.g., taxifolin and rhamnetin presented in the spruce bark extracts, have antiviral (SARS-CoV-2) effects. Therefore, this warrants further evaluation of the antiviral properties of spruce bark constituents.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ken H. Liu ◽  
Choon M. Lee ◽  
Grant Singer ◽  
Preeti Bais ◽  
Francisco Castellanos ◽  
...  

AbstractAdvances in genomics have revealed many of the genetic underpinnings of human disease, but exposomics methods are currently inadequate to obtain a similar level of understanding of environmental contributions to human disease. Exposomics methods are limited by low abundance of xenobiotic metabolites and lack of authentic standards, which precludes identification using solely mass spectrometry-based criteria. Here, we develop and validate a method for enzymatic generation of xenobiotic metabolites for use with high-resolution mass spectrometry (HRMS) for chemical identification. Generated xenobiotic metabolites were used to confirm identities of respective metabolites in mice and human samples based upon accurate mass, retention time and co-occurrence with related xenobiotic metabolites. The results establish a generally applicable enzyme-based identification (EBI) for mass spectrometry identification of xenobiotic metabolites and could complement existing criteria for chemical identification.


2021 ◽  
Vol 7 (3) ◽  
pp. 55
Author(s):  
Rachel Mador-House ◽  
Zaiping Liu ◽  
Sarah Dyack

Early-onset carnitine palmitoyltransferase II deficiency (CPT II deficiency) (OMIM 600650) can result in severe outcomes, which are often fatal in the neonatal to infantile period. CPT II deficiency is a primary target in the Maritime Newborn Screening Program. We report a case of neonatal-onset CPT II deficiency identified through expanded newborn screening with tandem mass spectrometry. Identification through newborn screening led to early treatment interventions, avoidance of metabolic decompensation, and a better clinical outcome. Newborn screening for CPT II deficiency is highly sensitive and specific with no false positives identified. The only screen positive case detected identified a true positive case. This experience illustrates the importance of newborn screening for CPT II deficiency and demonstrates why reconsideration should be taken to add this disease as a primary newborn screening target.


2021 ◽  
Vol 18 ◽  
Author(s):  
Najmeh Fahham ◽  
Fatemeh Zandi ◽  
Mohammad Hossein Ghahremani ◽  
Seyed Nasser Ostad ◽  
Behrouz Vaziri ◽  
...  

Background: P16 is a tumor suppressor protein that is significantly involved in cycle regulation through the reduction of cell progression from G1 phase to S phase via CDK-cyclin D/p16INK4a/pRb/E2F cascade. The minimum functional domain of p16 has been uncovered that may function comparable to wild type p16. Objective: To expand the knowledge on molecules and mechanisms by which p16 or p1666-156 fragment suppresses human fibrosarcoma cell line growth, differential proteome profiles of fibrosarcoma cells following p16 full length or the functional domain overexpression were analyzed. Methods: Following transfecting HT-1080 fibrosarcoma cells with p16 full length, p1666-156 truncated form, and pcDNA3.1 empty vector, protein extract of each sample was harvested and clarified by centrifugation, and then the protein content was determined via Bradford assay. All protein extract of each sample was analyzed by two-dimensional gel electrophoresis. Immunoblot analysis was performed as further validation of the expression status of identified proteins. Results: Expression of p16 or p1666-156 fragment could induce mostly common alterations (up/down-regulation) of proteome profile of HT-1080 cells. Mass spectrometry identification of the differentially expressed protein spots revealed several proteins that were grouped in functional clusters, including cell cycle regulation and proliferation, cell migration and structure, oxidative stress, protein metabolism, epigenetic regulation, and signal transduction. Conclusion: The minimum functional domain of p16 could act in the same way as p16 full length. Also, these new findings can significantly enrich the understanding of p16 growth-suppressive function at the molecular level by the introduction of potential candidate targets for new treatment strategies. Furthermore, the present study provides strong evidence on the functional efficacy of the identified fragment of p16 for further attempts toward peptidomimetic drug design or gene transfer to block cancer cell proliferation.


Sign in / Sign up

Export Citation Format

Share Document