Isolation of Low-n Amyloid β-Protein Oligomers from Cultured Cells, CSF, and Brain

Author(s):  
Ganesh M. Shankar ◽  
Alfred T. Welzel ◽  
Jessica M. McDonald ◽  
Dennis J. Selkoe ◽  
Dominic M. Walsh
2019 ◽  
Vol 29 (3) ◽  
pp. 382-393 ◽  
Author(s):  
Saori Hata ◽  
Anqi Hu ◽  
Yi Piao ◽  
Tadashi Nakaya ◽  
Hidenori Taru ◽  
...  

Abstract A neuropathologic hallmark of Alzheimer’s disease (AD) is the presence of senile plaques that contain neurotoxic amyloid-β protein (Aβ) species, which are generated by the cleavage of amyloid β-protein precursor by secretases such as the γ-secretase complex, preferentially located in detergent-resistant membrane (DRM) regions and comprising endoproteolysed amino- and carboxy-terminal fragments of presenilin, nicastrin, anterior pharynx defective 1 and presenilin enhancer 2. Whereas some of familial AD patients harbor causative PSEN mutations that lead to more generation of neurotoxic Aβ42, the contribution of Aβ generation to sporadic/late-onset AD remains unclear. We found that the carboxy-terminal fragment of presenilin 1 was redistributed from DRM regions to detergent-soluble membrane (non-DRM) regions in brain tissue samples from individuals with sporadic AD. DRM fractions from AD brain sample had the ability to generate significantly more Aβ and had a lower cholesterol content than DRM fractions from non-demented control subjects. We further demonstrated that lowering the cholesterol content of DRM regions from cultured cells contributed to the redistribution of γ-secretase components and Aβ production. Taken together, the present analyses suggest that the lowered cholesterol content in DRM regions may be a cause of sporadic/late-onset AD by enhancing overall Aβ generation.


1990 ◽  
Vol 97 (1) ◽  
pp. 43-52 ◽  
Author(s):  
Fuyuki Kametani ◽  
Seiichi Haga ◽  
Kikuko Tanaka ◽  
Tsuyoshi Ishii

2004 ◽  
Vol 367 (1) ◽  
pp. 123-128 ◽  
Author(s):  
Hongxiao Jia ◽  
Yong Jiang ◽  
Yan Ruan ◽  
Yanbo Zhang ◽  
Xin Ma ◽  
...  

1991 ◽  
Vol 11 (2) ◽  
pp. 177-180 ◽  
Author(s):  
Masato Mitsuhashi ◽  
Tatsuo Akitaya ◽  
Christoph W. Turk ◽  
Donald G. Payan

2021 ◽  
Vol 22 (4) ◽  
pp. 2099
Author(s):  
Nikol Jankovska ◽  
Tomas Olejar ◽  
Radoslav Matej

Alzheimer’s disease (AD) and sporadic Creutzfeldt–Jakob disease (sCJD) are both characterized by extracellular pathologically conformed aggregates of amyloid proteins—amyloid β-protein (Aβ) and prion protein (PrPSc), respectively. To investigate the potential morphological colocalization of Aβ and PrPSc aggregates, we examined the hippocampal regions (archicortex and neocortex) of 20 subjects with confirmed comorbid AD and sCJD using neurohistopathological analyses, immunohistochemical methods, and confocal fluorescent microscopy. Our data showed that extracellular Aβ and PrPSc aggregates tended to be, in most cases, located separately, and “compound” plaques were relatively rare. We observed PrPSc plaque-like structures in the periphery of the non-compact parts of Aβ plaques, as well as in tau protein-positive dystrophic structures. The AD ABC score according to the NIA-Alzheimer’s association guidelines, and prion protein subtype with codon 129 methionine–valine (M/V) polymorphisms in sCJD, while representing key characteristics of these diseases, did not correlate with the morphology of the Aβ/PrPSc co-aggregates. However, our data showed that PrPSc aggregation could dominate during co-aggregation with non-compact Aβ in the periphery of Aβ plaques.


Sign in / Sign up

Export Citation Format

Share Document