Identification of Mammalian Protein Complexes by Lentiviral-Based Affinity Purification and Mass Spectrometry

Author(s):  
Zuyao Ni ◽  
Jonathan B. Olsen ◽  
Andrew Emili ◽  
Jack F. Greenblatt
2020 ◽  
Vol 117 (50) ◽  
pp. 31861-31870
Author(s):  
Xingyu Liu ◽  
Ying Zhang ◽  
Zhihui Wen ◽  
Yan Hao ◽  
Charles A. S. Banks ◽  
...  

Streamlined characterization of protein complexes remains a challenge for the study of protein interaction networks. Here we describe serial capture affinity purification (SCAP), in which two separate proteins are tagged with either the HaloTag or the SNAP-tag, permitting a multistep affinity enrichment of specific protein complexes. The multifunctional capabilities of this protein-tagging system also permit in vivo validation of interactions using acceptor photobleaching Förster resonance energy transfer and fluorescence cross-correlation spectroscopy quantitative imaging. By coupling SCAP to cross-linking mass spectrometry, an integrative structural model of the complex of interest can be generated. We demonstrate this approach using the Spindlin1 and SPINDOC protein complex, culminating in a structural model with two SPINDOC molecules docked on one SPIN1 molecule. In this model, SPINDOC interacts with the SPIN1 interface previously shown to bind a lysine and arginine methylated sequence of histone H3. Our approach combines serial affinity purification, live cell imaging, and cross-linking mass spectrometry to build integrative structural models of protein complexes.


2019 ◽  
Vol 96 (1) ◽  
Author(s):  
Guillaume Adelmant ◽  
Brijesh K. Garg ◽  
Maria Tavares ◽  
Joseph D. Card ◽  
Jarrod A. Marto

2021 ◽  
Author(s):  
Ching-Seng Ang ◽  
Joanna Sacharz ◽  
Michael G Leeming ◽  
Shuai Nie ◽  
Swati Varshney ◽  
...  

Co-immunoprecipitation of proteins coupled to mass spectrometry has transformed modern biology understanding of protein interaction networks. These approaches exploit the selective isolation of tagged proteins by affinity enrichment / purification to identify protein binding partners at scale and in an unbiased manner. In instances where a suitable antibody is not be available it is common to graft synthetic tags such as FLAG or His Tags onto target protein sequences allowing the use of commercially available and validated antibodies for affinity purification. To allow the selective elution of protein complexes competitive displacement using a large molar excess of the tag peptide is widely used. Yet, this creates downstream challenges for the mass spectrometry analysis due to the presence of large quantities of a contaminating peptide. Here, we demonstrate that Field Asymmetric Ion Mobility Spectrometry (FAIMS), a gas phase ion separation device can be applied to FLAG-Tag and His-Tag pull down assay to increase the depth of protein coverage in these experiments. By excluding tag peptides based on their ion mobility profiles we demonstrate that single compensation voltage, or stepped compensation voltages strategies can significantly increase the coverage of total proteins by up to 2.5-fold and unique proteins by up to 15-fold versus experiments that do not use FAIMS. Combined these results highlight FAIMS is able to improve proteome depth by excluding interfering peptides without the need for additional sample handling or altering sample preparation protocols.


2008 ◽  
Vol 183 (2) ◽  
pp. 223-239 ◽  
Author(s):  
Laura Trinkle-Mulcahy ◽  
Séverine Boulon ◽  
Yun Wah Lam ◽  
Roby Urcia ◽  
François-Michel Boisvert ◽  
...  

The identification of interaction partners in protein complexes is a major goal in cell biology. Here we present a reliable affinity purification strategy to identify specific interactors that combines quantitative SILAC-based mass spectrometry with characterization of common contaminants binding to affinity matrices (bead proteomes). This strategy can be applied to affinity purification of either tagged fusion protein complexes or endogenous protein complexes, illustrated here using the well-characterized SMN complex as a model. GFP is used as the tag of choice because it shows minimal nonspecific binding to mammalian cell proteins, can be quantitatively depleted from cell extracts, and allows the integration of biochemical protein interaction data with in vivo measurements using fluorescence microscopy. Proteins binding nonspecifically to the most commonly used affinity matrices were determined using quantitative mass spectrometry, revealing important differences that affect experimental design. These data provide a specificity filter to distinguish specific protein binding partners in both quantitative and nonquantitative pull-down and immunoprecipitation experiments.


Sign in / Sign up

Export Citation Format

Share Document