mammalian protein
Recently Published Documents


TOTAL DOCUMENTS

315
(FIVE YEARS 23)

H-INDEX

65
(FIVE YEARS 3)

Author(s):  
Chayasith Uttamapinant ◽  
Kanokpol Aphicho ◽  
Narongyot Kittipanukul

Genetic code expansion has emerged as an enabling tool to provide insight into functions of understudied proteinogenic species such as small proteins and peptides, and to probe protein biophysics in the cellular context. Here we discuss recent technical advances and applications of genetic code expansion in cellular imaging of complex mammalian protein species, along with considerations and challenges upon using the method.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zach Rolfs ◽  
Brian L. Frey ◽  
Xudong Shi ◽  
Yoshitaka Kawai ◽  
Lloyd M. Smith ◽  
...  

AbstractProtein turnover is critical to cellular physiology as well as to the growth and maintenance of tissues. The unique synthesis and degradation rates of each protein help to define tissue phenotype, and knowledge of tissue- and protein-specific half-lives is directly relevant to protein-related drug development as well as the administration of medical therapies. Using stable isotope labeling and mass spectrometry, we determine the in vivo turnover rates of thousands of proteins—including those of the extracellular matrix—in a set of biologically important mouse tissues. We additionally develop a data visualization platform, named ApplE Turnover, that enables facile searching for any protein of interest in a tissue of interest and then displays its half-life, confidence interval, and supporting measurements. This extensive dataset and the corresponding visualization software provide a reference to guide future studies of mammalian protein turnover in response to physiologic perturbation, disease, or therapeutic intervention.


2021 ◽  
Author(s):  
Kumud Tiwari ◽  
Aditi Gangopadhyay ◽  
Gajender Singh ◽  
Samarendra Kumar Singh

Transcription Termination Factor 1 (TTF1) is an essential mammalian protein that regulates cellular transcription, replication fork arrest, DNA damage repair, chromatin remodelling etc. TTF1 interacts with numerous cellular proteins to regulate various cellular phenomena, and plays a crucial role in maintaining normal cellular physiology, dysregulation of which has been reported towards cancerous transformation of the cells. However, despite its key role in cellular physiology, the complete structure of human TTF1 has not been elucidated to date, either experimentally or computationally. Hence, understanding the structure of human TTF1 becomes highly important for studying its functions and interactions with other cellular factors. Therefore, the aim of this study was to construct the complete structure of human TTF1 protein, using molecular modelling approaches. Owing to the lack of suitable homologues in the PDB, the complete structure of human TTF1 was constructed using ab initio modelling. The structural stability was determined using molecular dynamics (MD) simulations in explicit solvent, and trajectory analyses. The representative structure of human TTF1 was obtained by trajectory clustering, and the central residues were determined by centrality analyses of the residue interaction network of TTF1. Two residue clusters, in the oligomerisation domain and C-terminal domain, were determined to be central to the structural stability of human TTF1. To the best of our knowledge, this study is the first to report the complete structure of human TTF1, and the results obtained herein will provide structural insights for future research in cancer biology and related studies.


Life ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1132
Author(s):  
Rui Dong ◽  
Xuejun Li ◽  
Kwok-On Lai

Among the nine mammalian protein arginine methyltransferases (PRMTs), PRMT8 is unusual because it has restricted expression in the nervous system and is the only membrane-bound PRMT. Emerging studies have demonstrated that this enzyme plays multifaceted roles in diverse processes in neurons. Here we will summarize the unique structural features of PRMT8 and describe how it participates in various neuronal functions such as dendritic growth, synapse maturation, and synaptic plasticity. Recent evidence suggesting the potential role of PRMT8 function in neurological diseases will also be discussed.


2021 ◽  
Author(s):  
Kärt Tomberg ◽  
Liliana Antunes ◽  
YangYang Pan ◽  
Jacob Hepkema ◽  
Dimitrios A Garyfallos ◽  
...  

The natural habitat of SARS-CoV-2 is the cytoplasm of a mammalian cell where it replicates its genome and expresses its proteins. While SARS-CoV-2 genes and hence its codons are presumably well optimized for mammalian protein translation, they have not been sequence optimized for nuclear expression. The cDNA of the Spike protein harbors over a hundred predicted splice sites and produces mostly aberrant mRNA transcripts when expressed in the nucleus. While different codon optimization strategies increase the proportion of full-length mRNA, they do not directly address the underlying splicing issue with commonly detected cryptic splicing events hindering the full expression potential. Similar splicing characteristics were also observed in other transgenes. By inserting multiple short introns throughout different transgenes, significant improvement in expression was achieved, including >7-fold increase for Spike transgene. Provision of a more natural genomic landscape offers a novel way to achieve multi-fold improvement in transgene expression.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nazmin Bithi ◽  
Christopher Link ◽  
Yoko O. Henderson ◽  
Suzie Kim ◽  
Jie Yang ◽  
...  

AbstractHydrogen sulfide (H2S) is a cytoprotective redox-active metabolite that signals through protein persulfidation (R-SSnH). Despite the known importance of persulfidation, tissue-specific persulfidome profiles and their associated functions are not well characterized, specifically under conditions and interventions known to modulate H2S production. We hypothesize that dietary restriction (DR), which increases lifespan and can boost H2S production, expands tissue-specific persulfidomes. Here, we find protein persulfidation enriched in liver, kidney, muscle, and brain but decreased in heart of young and aged male mice under two forms of DR, with DR promoting persulfidation in numerous metabolic and aging-related pathways. Mice lacking cystathionine γ-lyase (CGL) have overall decreased tissue protein persulfidation numbers and fail to functionally augment persulfidomes in response to DR, predominantly in kidney, muscle, and brain. Here, we define tissue- and CGL-dependent persulfidomes and how diet transforms their makeup, underscoring the breadth for DR and H2S to impact biological processes and organismal health.


2021 ◽  
Author(s):  
Katherine M. Hannan ◽  
Priscilla Soo ◽  
Mei S. Wong ◽  
Justine K. Lee ◽  
Nadine Hein ◽  
...  

AbstractThe nucleolar surveillance pathway (NSP) monitors nucleolar fidelity and responds to nucleolar stresses (i.e., inactivation of ribosome biogenesis) by mediating the inhibitory binding of ribosomal proteins (RPs) to mouse double minute 2 homolog (MDM2), a nuclear-localised E3 ubiquitin ligase, which results in p53 accumulation. Inappropriate activation of the NSP has been implicated in the pathogenesis of collection of human diseases termed “ribosomopathies”, while drugs that selectively activate the NSP are now in trials for cancer. Despite the clinical significance, the precise molecular mechanism(s) regulating the NSP remain poorly understood. Using genome-wide loss of function screens, we demonstrate the ribosome biogenesis (RiBi) axis as the most potent class of genes whose disruption stabilises p53. Furthermore, we identified a novel suite of genes critical for the NSP, including a novel mammalian protein implicated in 5S ribonucleoprotein particle (5S-RNP) biogenesis, HEATR3. By selectively disabling the NSP, we unexpectedly demonstrate that a functional NSP is required for the ability of all nuclear acting stresses tested, including DNA damage, to robustly induce p53 accumulation. Together, our data demonstrates that the NSP has evolved as the dominant central integrator of stresses that regulate nuclear p53 abundance, thus ensuring RiBi is hardwired to cellular proliferative capacity.


Author(s):  
Erik I. Hallin ◽  
Sigurbjörn Markússon ◽  
Lev Böttger ◽  
Andrew E. Torda ◽  
Clive R. Bramham ◽  
...  

AbstractSynaptic plasticity is vital for brain function and memory formation. One of the key proteins in long-term synaptic plasticity and memory is the activity-regulated cytoskeleton-associated protein (Arc). Mammalian Arc forms virus-like capsid-like structures in a process requiring the N-terminal domain and contains two C-terminal lobes that are structural homologues to retroviral capsids. Drosophila has two isoforms of Arc, dArc1 and dArc2, with low sequence similarity to mammalian Arc, but lacking the mammalian Arc N-terminal domain. Both dArc isoforms have a capsid homology domain consisting of N- and C-terminal lobes. We carried out structural characterization of the four individual dArc lobe domains. As opposed to the corresponding mammalian Arc lobe domains, which are monomeric, the dArc lobes were all oligomeric in solution, indicating a strong propensity for homophilic interactions. The N-lobe from dArc2 formed a domain-swapped dimer in the crystal structure, resulting in a novel dimer interaction that could be relevant for capsid assembly or other dArc functions. This domain-swapped structure resembles the dimeric protein C of flavivirus capsids, as well as the structure of histones dimers, domain-swapped transcription factors, and membrane-interacting BAK domains. The strong oligomerization properties of the isolated dArc lobe domains explain the ability of dArc to form capsids in the absence of any large N-terminal domain, in contrast to the mammalian protein.


2020 ◽  
Vol 117 (47) ◽  
pp. 29595-29601
Author(s):  
Łukasz F. Sobala ◽  
Pearl Z. Fernandes ◽  
Zalihe Hakki ◽  
Andrew J. Thompson ◽  
Jonathon D. Howe ◽  
...  

Mammalian protein N-linked glycosylation is critical for glycoprotein folding, quality control, trafficking, recognition, and function. N-linked glycans are synthesized from Glc3Man9GlcNAc2precursors that are trimmed and modified in the endoplasmic reticulum (ER) and Golgi apparatus by glycoside hydrolases and glycosyltransferases. Endo-α-1,2-mannosidase (MANEA) is the soleendo-acting glycoside hydrolase involved in N-glycan trimming and is located within the Golgi, where it allows ER-escaped glycoproteins to bypass the classical N-glycosylation trimming pathway involving ER glucosidases I and II. There is considerable interest in the use of small molecules that disrupt N-linked glycosylation as therapeutic agents for diseases such as cancer and viral infection. Here we report the structure of the catalytic domain of human MANEA and complexes with substrate-derived inhibitors, which provide insight into dynamic loop movements that occur on substrate binding. We reveal structural features of the human enzyme that explain its substrate preference and the mechanistic basis for catalysis. These structures have inspired the development of new inhibitors that disrupt host protein N-glycan processing of viral glycans and reduce the infectivity of bovine viral diarrhea and dengue viruses in cellular models. These results may contribute to efforts aimed at developing broad-spectrum antiviral agents and help provide a more in-depth understanding of the biology of mammalian glycosylation.


Sign in / Sign up

Export Citation Format

Share Document