affinity purification mass spectrometry
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 34)

H-INDEX

23
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Siobhan S Pattwell ◽  
Sonali Arora ◽  
Nicholas Nuechterlein ◽  
Michael Zager ◽  
Keith R Loeb ◽  
...  

Temporally-regulated alternative splicing choices are vital for proper development yet the wrong splice choice may be detrimental. Here we highlight a novel role for the neurotrophin receptor splice variant TrkB.T1 in neurodevelopment, embryogenesis, transformation, and oncogenesis across multiple tumor types in both humans and mice. TrkB.T1 is the predominant NTRK2 isoform across embryonic organogenesis and forced over-expression of this embryonic pattern causes multiple solid and nonsolid tumors in mice in the context of tumor suppressor loss. TrkB.T1 also emerges the predominant NTRK isoform expressed in a wide range of adult and pediatric tumors, including those harboring TRK fusions. Affinity purification-mass spectrometry (AP-MS) proteomic analysis reveals TrkB.T1 has distinct interactors with known developmental and oncogenic signaling pathways such as Wnt, TGF-β, Hedgehog, and Ras. From alterations in splicing factors to changes in gene expression, the discovery of isoform specific oncogenes with embryonic ancestry has the potential to shape the way we think about developmental systems and oncology.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Xiao-Tao Zeng ◽  
Xiao-Ti Yu ◽  
Wei Cheng

Abstract Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein determines virus entry and the palmitoylation of S protein affects virus infection. An acyltransferase complex ZDHHC5/GOGAL7 that interacts with S protein was detected by affinity purification mass spectrometry (AP-MS). However, the palmitoylated cysteine residues of S protein, the effects of ZDHHC5 or GOLGA7 knockout on S protein’s subcellular localization, palmitoylation, pseudovirus entry and the enzyme for depalmitoylation of S protein are not clear. Methods The palmitoylated cysteine residues of S protein were identified by acyl-biotin exchange (ABE) assays. The interactions between S protein and host proteins were analyzed by co-immunoprecipitation (co-IP) assays. Subcellular localizations of S protein and host proteins were analyzed by fluorescence microscopy. ZDHHC5 or GOGAL7 gene was edited by CRISPR-Cas9. The entry efficiencies of SARS-CoV-2 pseudovirus into A549 and Hela cells were analyzed by measuring the activity of Renilla luciferase. Results In this investigation, all ten cysteine residues in the endodomain of S protein were palmitoylated. The interaction of S protein with ZDHHC5 or GOLGA7 was confirmed. The interaction and colocalization of S protein with ZDHHC5 or GOLGA7 were independent of the ten cysteine residues in the endodomain of S protein. The interaction between S protein and ZDHHC5 was independent of the enzymatic activity and the PDZ-binding domain of ZDHHC5. Three cell lines HEK293T, A549 and Hela lacking ZDHHC5 or GOLGA7 were constructed. Furthermore, S proteins still interacted with one host protein in HEK293T cells lacking the other. ZDHHC5 or GOLGA7 knockout had no significant effect on S protein’s subcellular localization or palmitoylation, but significantly decreased the entry efficiencies of SARS-CoV-2 pseudovirus into A549 and Hela cells, while varying degrees of entry efficiencies may be linked to the cell types. Additionally, the S protein interacted with the depalmitoylase APT2. Conclusions ZDHHC5 and GOLGA7 played important roles in SARS-CoV-2 pseudovirus entry, but the reason why the two host proteins affected pseudovirus entry remains to be further explored. This study extends the knowledge about the interactions between SARS-CoV-2 S protein and host proteins and probably provides a reference for the corresponding antiviral methods.


Author(s):  
Malene E. Lindholm ◽  
David Jimenez-Morales ◽  
Han Zhu ◽  
Kinya Seo ◽  
David Amar ◽  
...  

Background: ACTN2 (alpha-actinin 2) anchors actin within cardiac sarcomeres. The mechanisms linking ACTN2 mutations to myocardial disease phenotypes are unknown. Here, we characterize patients with novel ACTN2 mutations to reveal insights into the physiological function of ACTN2. Methods: Patients harboring ACTN2 protein-truncating variants were identified using a custom mutation pipeline. In patient-derived iPSC-cardiomyocytes, we investigated transcriptional profiles using RNA sequencing, contractile properties using video-based edge detection, and cellular hypertrophy using immunohistochemistry. Structural changes were analyzed through electron microscopy. For mechanistic studies, we used coimmunoprecipitation for ACTN2, followed by mass-spectrometry to investigate protein-protein interaction, and protein tagging followed by confocal microscopy to investigate introduction of truncated ACTN2 into the sarcomeres. Results: Patient-derived iPSC-cardiomyocytes were hypertrophic, displayed sarcomeric structural disarray, impaired contractility, and aberrant Ca 2+ -signaling. In heterozygous indel cells, the truncated protein incorporates into cardiac sarcomeres, leading to aberrant Z-disc ultrastructure. In homozygous stop-gain cells, affinity-purification mass-spectrometry reveals an intricate ACTN2 interactome with sarcomere and sarcolemma-associated proteins. Loss of the C-terminus of ACTN2 disrupts interaction with ACTN1 and GJA1, 2 sarcolemma-associated proteins, which may contribute to the clinical arrhythmic and relaxation defects. The causality of the stop-gain mutation was verified using CRISPR-Cas9 gene editing. Conclusions: Together, these data advance our understanding of the role of ACTN2 in the human heart and establish recessive inheritance of ACTN2 truncation as causative of disease.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Henning Großkopf ◽  
Sarah Vogel ◽  
Claudia Damaris Müller ◽  
Sebastian Köhling ◽  
Jan-Niklas Dürig ◽  
...  

Abstract Glycosaminoglycans (GAGs) are essential functional components of the extracellular matrix (ECM). Artificial GAGs like sulfated hyaluronan (sHA) exhibit pro-osteogenic properties and boost healing processes. Hence, they are of high interest for supporting bone regeneration and wound healing. Although sulfated GAGs (sGAGs) appear intracellularly, the knowledge about intracellular effects and putative interaction partners is scarce. Here we used an affinity-purification mass spectrometry-based (AP-MS) approach to identify novel and particularly intracellular sGAG-interacting proteins in human bone marrow stromal cells (hBMSC). Overall, 477 proteins were found interacting with at least one of four distinct sGAGs. Enrichment analysis for protein localization showed that mainly intracellular and cell-associated interacting proteins were identified. The interaction of sGAG with α2-macroglobulin receptor-associated protein (LRPAP1), exportin-1 (XPO1), and serine protease HTRA1 (HTRA1) was confirmed in reverse assays. Consecutive pathway and cluster analysis led to the identification of biological processes, namely processes involving binding and processing of nucleic acids, LRP1-dependent endocytosis, and exosome formation. Respecting the preferentially intracellular localization of sGAG in vesicle-like structures, also the interaction data indicate sGAG-specific modulation of vesicle-based transport processes. By identifying many sGAG-specific interacting proteins, our data provide a resource for upcoming studies aimed at molecular mechanisms and understanding of sGAG cellular effects.


2021 ◽  
Author(s):  
Alexandra Bergfort ◽  
Marco Preussner ◽  
Benno Kuropka ◽  
İbrahim Ilik ◽  
Tarek Hilal ◽  
...  

Abstract The complete inventory of regulatory factors in human spliceosomes remains unknown, and many flexibly bound components are not revealed in present spliceosome structures. The intrinsically unstructured C9ORF78 protein was detected in C complex spliceosomes but is not contained in present spliceosome structures. We found a tight interaction between C9ORF78 and the key spliceosome remodeling factor, BRR2, in a large-scale yeast two-hybrid screen, validated by targeted in vitro assays. Affinity purification/mass spectrometry and RNA UV-crosslinking analyses identified several additional C9ORF78 interactors in spliceosomes. High-resolution cryogenic electron microscopy structures revealed how C9ORF78 and the spliceosomal B complex protein FBP21 wrap around the C-terminal helicase cassette of BRR2 in a mutually exclusive manner. Knock-down of C9ORF78 led to global alternative splicing changes, including a substantial usage of alternative NAGNAG 3’-splice sites, at least in part dependent on BRR2. Comparison of our structure to C* complex spliceosomes shows that C9ORF78 could contact several detected interactors from its BRR2 “home base”, in particular the RNA helicase PRPF22, a suggested 3’-splice site regulator. Together our data firmly establish C9ORF78 as a novel, late-stage splicing regulatory protein that takes advantage of a multi-factor trafficking site on BRR2, providing one explanation for the suggested, but puzzling, roles of BRR2 during splicing catalysis and alternative splicing.


2021 ◽  
Author(s):  
Tara E Tracy ◽  
Jesus Madero-Perez ◽  
Danielle Swaney ◽  
Timothy S Chang ◽  
Michelle Moritz ◽  
...  

Tau (MAPT) drives neuronal dysfunction in Alzheimer's disease (AD) and other tauopathies. To dissect the underlying mechanisms, we combined an engineered ascorbic acid peroxidase (APEX) approach with quantitative affinity purification mass spectrometry (AP-MS) followed by proximity ligation assay (PLA) to characterize Tau interactomes modified by neuronal activity and mutations that cause frontotemporal dementia (FTD) in human induced pluripotent stem cell (iPSC)-derived neurons. We established activity-dependent interactions of Tau with presynaptic vesicle proteins during Tau secretion and mapped the exact APEX-tau-induced biotinylated tyrosines to the cytosolic domains of the interacting vesicular proteins. We showed that FTD mutations impair bioenergetics and markedly diminished Tau's interaction with mitochondria proteins, which were downregulated in AD brains of multiple cohorts and correlated with disease severity. These multi-modal and dynamic Tau interactomes with unprecedented spatiotemporal resolution shed novel insights into Tau's role in neuronal function and disease-related processes with potential therapeutic targets to block Tau-mediated pathogenesis.


2021 ◽  
Author(s):  
Qingqing Chai ◽  
Sunan Li ◽  
Morgan K. Collins ◽  
Rongrong Li ◽  
Iqbal Ahmad ◽  
...  

HIV-1 Nef antagonizes SERINC5 by redirecting this potent restriction factor to the endosomes and lysosomes for degradation. However, the precise mechanism remains unclear. Using affinity purification/mass spectrometry, we identified cyclin K and cyclin-dependent kinase 13 (CycK:CDK13) as a new Nef-associated kinase complex. CycK:CDK13 phosphorylates the serine at position 360 (S360) in SERINC5, which is required for Nef downregulation of SERINC5 from the cell surface and its counter activity of the SERINC5 antiviral activity. To understand the role of S360 phosphorylation, we created chimeric proteins between CD8 and SERINC5. Nef not only downregulates, but importantly, also binds to this chimera in a S360-dependent manner. Thus, S360 phosphorylation increases interactions between Nef and SERINC5 and initiates the destruction of SERINC5 by the endocytic machinery.


Sign in / Sign up

Export Citation Format

Share Document