Screening for Bioactive Small Molecules by In Vivo Monitoring of Luciferase-Based Reporter Gene Expression in Arabidopsis thaliana

Author(s):  
Christian Meesters ◽  
Erich Kombrink
2002 ◽  
Vol 25 (8) ◽  
pp. 1115-1118 ◽  
Author(s):  
Kiyoshi Tanigawa ◽  
Katsunao Tanaka ◽  
Hidetaka Nagase ◽  
Hidekazu Miyake ◽  
Mamoru Kiniwa ◽  
...  

1996 ◽  
Vol 23 (1) ◽  
pp. 75 ◽  
Author(s):  
SR Mudge ◽  
WR Lewis-Henderson ◽  
RG Birch

Luciferase genes from Vibrio harveyi (luxAB) and firefly (luc) were introduced into E. coli, Agrobacteriurn, Arabidopsis and tobacco. Transformed bacteria and plants were quantitatively assayed for luciferase activity using a range of in vitro and in vivo assay conditions. Both lux and luc proved efficient reporter genes in bacteria, although it is important to be aware that the sensitive assays may detect expression due to readthrough from distant promoters. LUX activity was undetectable by liquid nitrogen-cooled CCD camera assays on intact tissues of plants which showed strong luxAB expression by in vitro assays. The decanal substrate for the lux assay was toxic to many plant tissues, and caused chemiluminescence in untransformed Arabidopsis leaves. These are serious limitations to application of the lux system for sensitive, non-toxic assays of reporter gene expression in plants. In contrast, LUC activity was readily detectable in intact tissues of all plants with luc expression detectable by luminometer assays on cell extracts. Image intensities of luc-expressing leaves were commonly two to four orders of magnitude above controls under the CCD camera. Provided adequate penetration of the substrate luciferin is obtained, luc is suitable for applications requiring sensitive, non-toxic assays of reporter gene expression in plants.


2001 ◽  
Vol 158 (7) ◽  
pp. 929-934 ◽  
Author(s):  
Manjiri R. Paradkar ◽  
William R. Marcotte

Gene Therapy ◽  
2000 ◽  
Vol 7 (15) ◽  
pp. 1333-1336 ◽  
Author(s):  
M Colin ◽  
S Moritz ◽  
H Schneider ◽  
J Capeau ◽  
C Coutelle ◽  
...  

1999 ◽  
Vol 72 (1-2) ◽  
pp. 125-133 ◽  
Author(s):  
C Watkins ◽  
S Lau ◽  
R Thistlethwaite ◽  
J Hopkins ◽  
G.D Harkiss

Blood ◽  
2009 ◽  
Vol 113 (21) ◽  
pp. 5121-5124 ◽  
Author(s):  
Thomas Bee ◽  
Emma L.K. Ashley ◽  
Sorrel R.B. Bickley ◽  
Andrew Jarratt ◽  
Pik-Shan Li ◽  
...  

Abstract The transcription factor Runx1 plays a pivotal role in hematopoietic stem cell (HSC) emergence, and studies into its transcriptional regulation should give insight into the critical steps of HSC specification. Recently, we identified the Runx1 +23 enhancer that targets reporter gene expression to the first emerging HSCs of the mouse embryo when linked to the heterologous hsp68 promoter. Endogenous Runx1 is transcribed from 2 alternative promoters, P1 and P2. Here, we examined the in vivo cis-regulatory potential of these alternative promoters and asked whether they act with and contribute to the spatiotemporal specific expression of the Runx1 +23 enhancer. Our results firmly establish that, in contrast to zebrafish runx1, mouse Runx1 promoter sequences do not confer any hematopoietic specificity in transgenic embryos. Yet, both mouse promoters act with the +23 enhancer to drive reporter gene expression to sites of HSC emergence and colonization, in a +23-specific pattern.


Sign in / Sign up

Export Citation Format

Share Document