Distributed Production Planning Models: an Integrated Approach

Author(s):  
Paolo Renna

Production networks can be dynamically structured and involving multiple production sites with different objectives. This organizational structure is able to match agility and efficiency to compete in the global market. In this environment is impossible for a single organization to control whole production networks; thus, a decentralized approach has been developed to manage the production networks. However, the coordinate mechanism in decentralized control is more important to obtain a high level of performance. The research proposes innovative coordination strategies for coordinate production networks by Multi Agent Architecture. A link between negotiation strategies and a production planning algorithm has been developed in order to support the coordination strategies proposed. In particular, two protocols to reach an agreement between customer and the production network have been proposed: negotiation and an expected profit approaches. Moreover, two coordination strategies have been proposed: index efficiency and ranking price approaches. Finally, the possibility of divide the orders in lots by the customer is proposed. A simulation environment based on open source code and Multi Agent Architecture has been developed to test the proposed approaches. The experiments have been conducted in different conditions of workload and mar-up; the results of the simulation provide the information necessary to select the suitable coordination and protocol mechanisms in a distributed production planning problem.


2007 ◽  
Vol 37 (10) ◽  
pp. 2010-2021 ◽  
Author(s):  
Samuel D. Pittman ◽  
B. Bruce Bare ◽  
David G. Briggs

Forest planning models have increased in size and complexity as planners address a growing array of economic, ecological, and societal issues. Hierarchical production models offer a means of better managing these large and complex models. Hierarchical production planning models decompose large models into a set of smaller linked models. For example, in this paper, a Lagrangian relaxation formulation and a modified Dantzig–Wolfe decomposition – column generation routine are used to solve a hierarchical forest planning model that maximizes the net present value of harvest incomes while recognizing specific geographical units that are subject to harvest flow and green-up constraints. This allows the planning model to consider forest-wide constraints such as harvest flow, as well as address separate subproblems for each contiguous management zone for which detailed spatial plans are computed. The approach taken in this paper is different from past approaches in forest hierarchical planning because we start with a single model and derive a hierarchical model that addresses integer subproblems using Dantzig–Wolfe decomposition. The decomposition approach is demonstrated by analyzing a set of randomly generated planning problems constructed from a large forest and land inventory data set.


1994 ◽  
Vol 19 (4) ◽  
pp. 15-28
Author(s):  
N Narayanan

Programmes of change such as Kaizen, JIT, TQM, etc, which envisage a cultural change, are helpful in achieving improvement as a way of life in an organization. However, the existing practice of “management by crises' can act as a formidable barrier for devoting time to improvement activities. This paper by N Narayanan explores the phenomenon of management by crises' and discusses an integrated approach aimed at facilitating development of a new practice of early detection of problems and solving problems at the source.


Sign in / Sign up

Export Citation Format

Share Document