Training Binary Weight Networks via Semi-Binary Decomposition

Author(s):  
Qinghao Hu ◽  
Gang Li ◽  
Peisong Wang ◽  
Yifan Zhang ◽  
Jian Cheng
2020 ◽  
Vol 26 (2) ◽  
pp. 163-169
Author(s):  
Vladimir Nekrutkin

AbstractThis paper is devoted to random-bit simulation of probability densities, supported on {[0,1]}. The term “random-bit” means that the source of randomness for simulation is a sequence of symmetrical Bernoulli trials. In contrast to the pioneer paper [D. E. Knuth and A. C. Yao, The complexity of nonuniform random number generation, Algorithms and Complexity, Academic Press, New York 1976, 357–428], the proposed method demands the knowledge of the probability density under simulation, and not the values of the corresponding distribution function. The method is based on the so-called binary decomposition of the density and comes down to simulation of a special discrete distribution to get several principal bits of output, while further bits of output are produced by “flipping a coin”. The complexity of the method is studied and several examples are presented.


Author(s):  
Nandini H. M. ◽  
Chethan H. K. ◽  
Rashmi B. S.

Shot boundary detection in videos is one of the most fundamental tasks towards content-based video retrieval and analysis. In this aspect, an efficient approach to detect abrupt and gradual transition in videos is presented. The proposed method detects the shot boundaries in videos by extracting block-based mean probability binary weight (MPBW) histogram from the normalized Kirsch magnitude frames as an amalgamation of local and global features. Abrupt transitions in videos are detected by utilizing the distance measure between consecutive MPBW histograms and employing an adaptive threshold. In the subsequent step, co-efficient of mean deviation and variance statistical measure is applied on MPBW histograms to detect gradual transitions in the video. Experiments were conducted on TRECVID 2001 and 2007 datasets to analyse and validate the proposed method. Experimental result shows significant improvement of the proposed SBD approach over some of the state-of-the-art algorithms in terms of recall, precision, and F1-score.


Author(s):  
Renzo Andri ◽  
Lukas Cavigelli ◽  
Davide Rossi ◽  
Luca Benini

Author(s):  
Kailing Guo ◽  
Yicai Yang ◽  
Xiaofen Xing ◽  
Xiangmin Xu
Keyword(s):  

2019 ◽  
Vol 18 ◽  
pp. 153303381983074 ◽  
Author(s):  
Antonin Prochazka ◽  
Sumeet Gulati ◽  
Stepan Holinka ◽  
Daniel Smutek

In recent years, several computer-aided diagnosis systems emerged for the diagnosis of thyroid gland disorders using ultrasound imaging. These systems based on machine learning algorithms may offer a second opinion to radiologists by evaluating a malignancy risk of thyroid tissue, thus increasing the overall diagnostic accuracy of ultrasound imaging. Although current computer-aided diagnosis systems exhibit promising results, their use in clinical practice is limited. One of the main limitations is that the majority of them use direction-dependent features. Our intention has been to design a computer-aided diagnosis system, which will use only direction-independent features, that is, it will not be dependent on the orientation and the inclination angle of the ultrasound probe when acquiring the image. We have, therefore, applied histogram analysis and segmentation-based fractal texture analysis algorithm, which calculates direction-independent features only. In our study, 40 thyroid nodules (20 malignant and 20 benign) were used to extract several features, such as histogram parameters, fractal dimension, and mean brightness value in different grayscale bands (obtained by 2-threshold binary decomposition). The features were then used in support vector machine and random forests classifiers to differentiate nodules into malignant and benign classes. Using leave-one-out cross-validation method, the overall accuracy was 92.42% for random forests and 94.64% for support vector machine. Results show that both methods are useful in practice; however, support vector machine provides better results for this application. Proposed computer-aided diagnosis system can provide support to radiologists in their current diagnosis of thyroid nodules, whereby it can optimize the overall accuracy of ultrasound imaging.


Sign in / Sign up

Export Citation Format

Share Document