Phosphate Homeostasis: Links with Seed Quality and Stress Tolerance in Chickpea

2018 ◽  
pp. 191-217 ◽  
Author(s):  
Poonam Mehra ◽  
Ajit Pal Singh ◽  
Jyoti Bhadouria ◽  
Lokesh Verma ◽  
Poonam Panchal ◽  
...  
2015 ◽  
Vol 42 ◽  
pp. 1-12 ◽  
Author(s):  
B. Baroowa ◽  
N. Gogoi

Drought is one of the major abiotic stresses which adversely affect crop growth and production worldwide as water is vital for every aspect of plant growth and development. The present experiment was carried out during the growing seasons (September – December) of 2012 and 2013 to evaluate the response of black gram (Vigna mungo L.) and green gram (Vigna radiata L.) in terms of some important growth indices, biochemical traits and seed quality under drought stress. Four commonly grown genotypes - T9, KU 301(black gram) and Pratap, SG 21-5 (green gram) of Assam, India were grown in a randomized block design with three replications under stress and non-stress conditions. Stress was applied by withholding irrigation for fifteen consecutive days at vegetative, flowering and pod filling stages. Leaf area index (LAI), seed protein content and protein yield significantly decreased (p ≤ 0.01) whereas proline, total flavonoids and anthocyanin content increased significantly (p ≤ 0.01) in response to water deficiency. Among the studied genotypes, T9 and Pratap showed better tolerance capacity towards the applied drought by presenting higher values of LAI, plant height stress tolerance index (PHSI), dry matter stress tolerance index (DMSI), proline, total flavonoids, anthocyanin, lower percentage of chlorophyll degradation and finally producing high quality seeds.


2009 ◽  
Author(s):  
Ted B. Kinney ◽  
Mei-Chuan Kung ◽  
Kathleen M. Meckley ◽  
Kristin M. Delgado
Keyword(s):  

2018 ◽  
Vol 34 (2) ◽  
pp. 259-265 ◽  
Author(s):  
Hemant B Kardile ◽  
◽  
Vikrant ◽  
Nirmal Kant Sharma ◽  
Ankita Sharma ◽  
...  

Author(s):  
J.A. Lancashire ◽  
J.L. Brock

Some characteristics of seed quality, establishment rates, performance in mixtures and response to grazing management of 5 new pasture plants with potential in dryland are described. On a dry hill country site in the Wairarapa, the contribution of the sown grasses established in separate plots with clovers under rotational grazing was 'Grasslands Wana' cocksfoot 65%; 'Grasslands Maru' phalaris 23%; 'Grasslands Matua' prairie grass 22%; and 'Grasslands Roa' tall fescue 13% after 2 years. The other main grass species was resident perennial ryegrass which established from buried seed (ca. 240 plants/m*) and had a major impact on the establishment and growth of the sown grasses. On a seasonally dry Manawatu flat land soil 3 grazing managementsviz. set stocked all year (S); rotational all year (R); and combination (Cl (set stocked from lambing to drafting and rotational for the remainder of the year) were applied to mixtures of the new cultivars (except that 'Grasslands Apanui' cocksfoot replaced Wana) with ryegrass and white clover stocked at 20 sheep/ha. After 3 years the contribution of the new cultivars was negligible under S and ryegrass was dominant. The R pastures became cocksfoot dominant and Matua (in winter) and chicory (in summer) contributed more than in the S system. The C system produced the most evenly balanced species contribution with only Roa remaining at (5%. A sub-trial with cocksfoot cultivars demonstrated that Wana maintained better production and tiller density ~ll,000/m2 ) than Apanui (1000/m' ) under set stocking IS). Although some of the new cultivars will require specialised management procedures to fulfil their potential in dryland, the increasing and widespread use of Matua prairie grass in farming suggests that these techniques can be adopted in commercial agriculture provided good technical information is available in a management package when the cultivar is released. Keywords: Dryland, grazing management, mixtures, Matua prairie grass, Wana cocksfoot, Roa tall fescue, Maru phalaris, Chicory


2017 ◽  
Vol 45 (1) ◽  
pp. 100-111 ◽  
Author(s):  
S.P. Miya ◽  
A.T. Modi ◽  
T. Mabhaudhi

2014 ◽  
Vol 2 (2) ◽  
pp. 93-100
Author(s):  
Shahnaj Yesmina ◽  
Moushumi Akhtarb ◽  
Belal Hossain

The experiment was conducted to find out the effect of variety, nitrogen level and harvesting time on yield and seed quality of barley. The treatments used in the experiment consisted of two varieties viz. BARI Barley 4 and BARI Barley 5, three harvesting time viz. 35, 40 and 45 Days after Anthesis (DAA) and nitrogen levels viz. 0, 70, 85 and 100 kg N ha-1 . The experiment was laid out in a spilt- spilt-plot design with three replications assigning the variety to the main plot, harvesting time to the sub-plots and nitrogen level to the sub-sub plots. Variety had significant effects on the all yield attributes except fertile seeds spike-1 . Seed quality parameters viz. normal seeds spike-1 , deformed seeds spike-1 , germination (%) and vigour index were statistically significant. The variety BARI Barley 5 produced higher grain yield and seed quality than BARI Barley 4. Grain yield from BARI Barley 5 and BARI Barley 4 were 4.59 t ha-1 and 4.24 t ha-1 , respectively. Significantly, the highest 1000-seed weight (46.90 g) was produced by BARI Barley 5 than (37.90 g) BARI Barley 4. The result revealed that harvesting time had significant effect on yield and yield attributes and seed quality parameters. Seed yield was highest (4.65 t ha-1 ) when the crop harvested at 40 DAA and it was increased linearly from 35 DAA. Maximum quality seed and 1000-seed weight (43.20 g) was obtained when the crop harvested at 40 DAA. All the yields, yield attributes and seed quality parameters were significantly influenced by nitrogen levels. The highest grain yield (5.14 t ha-1 ) was obtained when BARI Barley 5 variety was fertilized by 100 kg N ha-1 and the lowest (3.14 t ha-1 ) was obtained from control treatments. Normal seeds spike-1 , vigour index, germination (%) were better at 85 kg N ha-1 in variety of BARI Barley 5 than BARI Barley 4. So it can be concluded that BARI Barley 5 showed better result when fertilized with 100 kg N ha-1 and harvested at 40 DAA for getting maximum yield and 85 kg N ha-1 and harvested at 40 DAA for getting better quality seed.


Sign in / Sign up

Export Citation Format

Share Document