SLC34A3 Mutations in Patients with Hereditary Hypophosphatemic Rickets with Hypercalciuria Predict a Key Role for the Sodium-Phosphate Cotransporter NaPi-IIc in Maintaining Phosphate Homeostasis

2007 ◽  
Vol 2007 ◽  
pp. 317-319
Author(s):  
B.L. Clarke
1997 ◽  
Vol 273 (4) ◽  
pp. F489-F498 ◽  
Author(s):  
Michael J. Econs ◽  
Fiona Francis

X-linked hypophosphatemic rickets (HYP) is the most common form of hereditary renal phosphate wasting. The hallmarks of this disease are isolated renal phosphate wasting with inappropriately normal calcitriol concentrations and a mineralization defect in bone. Studies in the Hyp mouse, one of the murine models of the human disease, suggest that there is an ∼50% decrease in both message and protein of NPT-2, the predominant sodium-phosphate cotransporter in the proximal tubule. However, human NPT-2 maps to chromosome 5q35, indicating that it is not the disease gene. Positional cloning studies have led to the identification of a gene, PEX, which is responsible for the disorder. Further studies have led to identification of the murine Pex gene, which is mutated in the murine models of the disorder. These studies, in concert with other studies, have led to improved understanding of the pathophysiology of HYP and a new appreciation for the complexity of normal phosphate homeostasis.


2008 ◽  
Vol 19 (9) ◽  
pp. 1753-1762 ◽  
Author(s):  
Takayuki Iwaki ◽  
Mayra J. Sandoval-Cooper ◽  
Harriet S. Tenenhouse ◽  
Francis J. Castellino

2020 ◽  
Vol 105 (7) ◽  
pp. 2392-2400
Author(s):  
Rebecca J Gordon ◽  
Dong Li ◽  
Daniel Doyle ◽  
Joshua Zaritsky ◽  
Michael A Levine

Abstract Context Hypophosphatemia and metabolic bone disease are associated with hereditary hypophosphatemic rickets with hypercalciuria (HHRH) due to biallelic mutations of SLC34A3 encoding the NPT2C sodium-phosphate cotransporter and nephrolithiasis/osteoporosis, hypophosphatemic 1 (NPHLOP1) due to monoallelic mutations in SLC34A1 encoding the NPT2A sodium-phosphate cotransporter. Objective To identify a genetic cause of apparent dominant transmission of HHRH. Design and Setting Retrospective and prospective analysis of clinical and molecular characteristics of patients studied in 2 academic medical centers. Methods We recruited 4 affected and 3 unaffected members of a 4-generation family in which the proband presented with apparent HHRH. We performed clinical examinations, biochemical and radiological analyses, and molecular studies of genomic DNA. Results The proband and her affected sister and mother carried pathogenic heterozygous mutations in 2 related genes, SLC34A1 (exon 13, c.1535G>A; p.R512H) and SLC34A3 (exon 13, c.1561dupC; L521Pfs*72). The proband and her affected sister inherited both gene mutations from their mother, while their clinically less affected brother, father, and paternal grandmother carried only the SLC34A3 mutation. Renal phosphate-wasting exhibited both a gene dosage–effect and an age-dependent attenuation of severity. Conclusions We describe a kindred with autosomal dominant hypophosphatemic rickets in which whole exome analysis identified digenic heterozygous mutations in SLC34A1 and SLC34A3. Subjects with both mutations were more severely affected than subjects carrying only one mutation. These findings highlight the challenges of assigning causality to plausible genetic variants in the next generation sequencing era.


2009 ◽  
Vol 94 (11) ◽  
pp. 4433-4438 ◽  
Author(s):  
Amanda L. Tencza ◽  
Shoji Ichikawa ◽  
Anna Dang ◽  
David Kenagy ◽  
Edward McCarthy ◽  
...  

2006 ◽  
Vol 78 (2) ◽  
pp. 193-201 ◽  
Author(s):  
Bettina Lorenz-Depiereux ◽  
Anna Benet-Pages ◽  
Gertrud Eckstein ◽  
Yardena Tenenbaum-Rakover ◽  
Janine Wagenstaller ◽  
...  

2003 ◽  
Vol 285 (1) ◽  
pp. E1-E9 ◽  
Author(s):  
L. Darryl Quarles

There is evidence for a hormone/enzyme/extracellular matrix protein cascade involving fibroblastic growth factor 23 (FGF23), a phosphate-regulating gene with homologies to endopeptidases on the X chromosome (PHEX), and a matrix extracellular phosphoglycoprotein (MEPE) that regulates systemic phosphate homeostasis and mineralization. Genetic studies of autosomal dominant hypophosphatemic rickets (ADHR) and X-linked hypophosphatemia (XLH) identified the phosphaturic hormone FGF23 and the membrane metalloprotease PHEX, and investigations of tumor-induced osteomalacia (TIO) discovered the extracellular matrix protein MEPE. Similarities between ADHR, XLH, and TIO suggest a model to explain the common pathogenesis of renal phosphate wasting and defective mineralization in these disorders. In this model, increments in FGF23 and MEPE, respectively, cause renal phosphate wasting and intrinsic mineralization abnormalities. FGF23 elevations in ADHR are due to mutations of FGF23 that block its degradation, in XLH from indirect actions of inactivating mutations of PHEX to modify the expression and/or degradation of FGF23 and MEPE, and in TIO because of increased production of FGF23 and MEPE. Although this model is attractive, several aspects need to be validated. First, the enzymes responsible for metabolizing FGF23 and MEPE need to be established. Second, the physiologically relevant PHEX substrates and the mechanisms whereby PHEX controls FGF23 and MEPE metabolism need to be elucidated. Finally, additional studies are required to establish the molecular mechanisms of FGF23 and MEPE actions on kidney and bone, as well as to confirm the role of these and other potential “phosphatonins,” such as frizzled related protein-4, in the pathogenesis of the renal and skeletal phenotypes in XLH and TIO. Unraveling the components of this hormone/enzyme/extracellular matrix pathway will not only lead to a better understanding of phosphate homeostasis and mineralization but may also improve the diagnosis and treatment of hypo- and hyperphosphatemic disorders.


Sign in / Sign up

Export Citation Format

Share Document