High Performance Computing: Challenges and Risks for the Future

Author(s):  
Michael M. Resch ◽  
Thomas Boenisch ◽  
Michael Gienger ◽  
Bastian Koller
Author(s):  
Kim Grover-Haskin

Present day and projected labor demands forecast a need for minds to comprehend in algorithm in order to leverage computing developments for real world problem resolutions. This chapter focuses not so much on solutions to the preparation of the learners and the scientists, but on the future leadership that will advocate and open doors for the high performance computing community to be funded, supported, and practiced. Supercomputing's sustainable future lies in its future of leadership. Studies over the last ten years identify a shift in leadership as the Baby Boomers enter retirement. The talent pool following the Baby Boomers will shrink in numbers between 2010-2020. Women continue to be under represented in IT leadership. This chapter provides information on the talent pool for supercomputing, discusses leadership and organizational culture as influenced by gender, and explores how a mentoring community fosters leaders for the future.


Author(s):  
Domen Verber

A state-of-the-art and a possible future of High Performance Computing (HPC) are discussed. The steady advances in hardware have resulted in increasingly more powerful computers. Some HPC applications that were years ago only in the domain of supercomputers can nowadays be executed on desktop and mobile computers. Furthermore, the future of computers is in the “Internet-of-things” and cyber-physical systems. There, computers are embedded into the devices such as cars, house appliances, production lines, into our clothing, etc. They are interconnected with each other and they may cooperate. Based on that, a new kind of application emerges, which requires the HPC architectures and development techniques. The primary focus of the chapter is on different hardware architectures for HPC and some particularities of HPC programming. Some alternatives to traditional computational models are given. At the end, some replacements for semiconductor technologies of modern computers are debated.


Author(s):  
Kim Grover-Haskin

Present day and projected labor demands forecast a need for minds to comprehend in algorithm in order to leverage computing developments for real world problem resolutions. This chapter focuses not so much on solutions to the preparation of the learners and the scientists, but on the future leadership that will advocate and open doors for the high performance computing community to be funded, supported, and practiced. Supercomputing's sustainable future lies in its future of leadership. Studies over the last ten years identify a shift in leadership as the Baby Boomers enter retirement. The talent pool following the Baby Boomers will shrink in numbers between 2010-2020. Women continue to be under represented in IT leadership. This chapter provides information on the talent pool for supercomputing, discusses leadership and organizational culture as influenced by gender, and explores how a mentoring community fosters leaders for the future.


Sign in / Sign up

Export Citation Format

Share Document