DReAM: Dynamic Reconfigurable Architecture Modeling

Author(s):  
Rocco De Nicola ◽  
Alessandro Maggi ◽  
Joseph Sifakis
2020 ◽  
Vol E103.B (5) ◽  
pp. 618-626
Author(s):  
Lin JIANG ◽  
Xin WU ◽  
Yun ZHU ◽  
Yu WANG

2016 ◽  
Vol E99.C (7) ◽  
pp. 866-877 ◽  
Author(s):  
Abdulfattah M. OBEID ◽  
Syed Manzoor QASIM ◽  
Mohammed S. BENSALEH ◽  
Abdullah A. ALJUFFRI

2010 ◽  
Author(s):  
Stas Tarchalski ◽  
Sue O'Brien ◽  
Dawn Sabados ◽  
Julie Fortune ◽  
Phillip Alldredge ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
pp. 39-48
Author(s):  
Chao Luo ◽  
Ailin Jia ◽  
Jianlin Guo ◽  
Wei Liu ◽  
Nanxin Yin ◽  
...  

Abstract Although stochastic modeling methods can achieve multiple implementations of sedimentary microfacies model in dense well blocks, it is difficult to realize continuous convergence of well spacing. Taking the small high-sinuosity meandering river sediments of the third member of Quantou Formation in Songliao Basin as an example, a deterministic modeling method based on geological vector information was explored in this article. Quantitative geological characteristics of point bar sediments were analyzed by field outcrops, modern sediments, and dense well block anatomy. The lateral extension distance, length, and spacing parameters of the point bar were used to quantitatively characterize the thickness, dip angle, and frequency of the lateral layer. In addition, the three-dimensional architecture modeling of the point bar was carried out in the study. The established three-dimensional architecture model of well X24-1 had continuous convergence near all wells, which conformed to the geological knowledge of small high-sinuosity meandering river, and verified the reliability of this method in the process of geological modeling in dense well blocks.


2021 ◽  
Vol 1 ◽  
pp. 2027-2036
Author(s):  
Aschot Kharatyan ◽  
Julian Tekaat ◽  
Sergej Japs ◽  
Harald Anacker ◽  
Roman Dumitrescu

AbstractAs digitization progresses, the integration of information and communication technologies in technical systems is constantly increasing. Fascinating value potentials are emerging (e.g. autonomous driving), but also challenges in the system development. The constantly increasing product complexity and degree of networking require a systemic development, which is fulfilled by established approaches of Model-Based Systems Engineering (MBSE). To ensure the reliability of tomorrow's systems, an integrative and early consideration of security and safety is additionally required. In order to show the possibility and consequences of failures and attacks, the paper develops a modeling language that links established and partly isolated security and safety approaches within a consistent metamodel. The developer is enabled to synthesize system architectures transparently on an interdisciplinary level and to analyze attack and failure propagation integratively. The approach uncovers synergetic and especially contrasting goals and effects of architectural designs in terms of safety and security in order to make adequate architectural decisions based on trade-off analyses.


Sign in / Sign up

Export Citation Format

Share Document