Adaptive Data Sampling Mechanism for Process Object

Author(s):  
Yongzheng Lin ◽  
Hong Liu ◽  
Zhenxiang Chen ◽  
Kun Zhang ◽  
Kun Ma
Keyword(s):  
2008 ◽  
Author(s):  
Michelle T. Armesto ◽  
Ruben Hernandez-Murillo ◽  
Michael Owyang ◽  
Jeremy M. Piger

2020 ◽  
Vol 14 (1) ◽  
pp. 12
Author(s):  
Julien Chevallier

In the Dynamic Conditional Correlation with Mixed Data Sampling (DCC-MIDAS) framework, we scrutinize the correlations between the macro-financial environment and CO2 emissions in the aftermath of the COVID-19 diffusion. The main original idea is that the economy’s lock-down will alleviate part of the greenhouse gases’ burden that human activity induces on the environment. We capture the time-varying correlations between U.S. COVID-19 confirmed cases, deaths, and recovered cases that were recorded by the Johns Hopkins Coronavirus Center, on the one hand; U.S. Total Industrial Production Index and Total Fossil Fuels CO2 emissions from the U.S. Energy Information Administration on the other hand. High-frequency data for U.S. stock markets are included with five-minute realized volatility from the Oxford-Man Institute of Quantitative Finance. The DCC-MIDAS approach indicates that COVID-19 confirmed cases and deaths negatively influence the macro-financial variables and CO2 emissions. We quantify the time-varying correlations of CO2 emissions with either COVID-19 confirmed cases or COVID-19 deaths to sharply decrease by −15% to −30%. The main takeaway is that we track correlations and reveal a recessionary outlook against the background of the pandemic.


Geophysics ◽  
2014 ◽  
Vol 79 (1) ◽  
pp. IM1-IM9 ◽  
Author(s):  
Nathan Leon Foks ◽  
Richard Krahenbuhl ◽  
Yaoguo Li

Compressive inversion uses computational algorithms that decrease the time and storage needs of a traditional inverse problem. Most compression approaches focus on the model domain, and very few, other than traditional downsampling focus on the data domain for potential-field applications. To further the compression in the data domain, a direct and practical approach to the adaptive downsampling of potential-field data for large inversion problems has been developed. The approach is formulated to significantly reduce the quantity of data in relatively smooth or quiet regions of the data set, while preserving the signal anomalies that contain the relevant target information. Two major benefits arise from this form of compressive inversion. First, because the approach compresses the problem in the data domain, it can be applied immediately without the addition of, or modification to, existing inversion software. Second, as most industry software use some form of model or sensitivity compression, the addition of this adaptive data sampling creates a complete compressive inversion methodology whereby the reduction of computational cost is achieved simultaneously in the model and data domains. We applied the method to a synthetic magnetic data set and two large field magnetic data sets; however, the method is also applicable to other data types. Our results showed that the relevant model information is maintained after inversion despite using 1%–5% of the data.


2011 ◽  
Vol 47 (1) ◽  
pp. 115-135 ◽  
Author(s):  
Mariano González ◽  
Juan Nave ◽  
Gonzalo Rubio

AbstractThis paper explores the cross-sectional variation of expected returns for a large cross section of industry and size/book-to-market portfolios. We employ mixed data sampling (MIDAS) to estimate a portfolio’s conditional beta with the market and with alternative risk factors and innovations to well-known macroeconomic variables. The market risk premium is positive and significant, and the result is robust to alternative asset pricing specifications and model misspecification. However, the traditional 2-pass ordinary least squares (OLS) cross-sectional regressions produce an estimate of the market risk premium that is negative, and significantly different from 0. Using alternative procedures, we compare both beta estimators. We conclude that beta estimates under MIDAS present lower mean absolute forecasting errors and generate better out-of-sample performance of the optimized portfolios relative to OLS betas.


Sign in / Sign up

Export Citation Format

Share Document