Anomaly Detection and Diagnosis for Container-Based Microservices with Performance Monitoring

Author(s):  
Qingfeng Du ◽  
Tiandi Xie ◽  
Yu He
Author(s):  
Xiaomo Jiang ◽  
Craig Foster

Gas turbine simple or combined cycle plants are built and operated with higher availability, reliability, and performance in order to provide the customer with sufficient operating revenues and reduced fuel costs meanwhile enhancing customer dispatch competitiveness. A tremendous amount of operational data is usually collected from the everyday operation of a power plant. It has become an increasingly important but challenging issue about how to turn this data into knowledge and further solutions via developing advanced state-of-the-art analytics. This paper presents an integrated system and methodology to pursue this purpose by automating multi-level, multi-paradigm, multi-facet performance monitoring and anomaly detection for heavy duty gas turbines. The system provides an intelligent platform to drive site-specific performance improvements, mitigate outage risk, rationalize operational pattern, and enhance maintenance schedule and service offerings via taking appropriate proactive actions. In addition, the paper also presents the components in the system, including data sensing, hardware, and operational anomaly detection, expertise proactive act of company, site specific degradation assessment, and water wash effectiveness monitoring and analytics. As demonstrated in two examples, this remote performance monitoring aims to improve equipment efficiency by converting data into knowledge and solutions in order to drive value for customers including lowering operating fuel cost and increasing customer power sales and life cycle value.


2021 ◽  
Vol 13 (5) ◽  
pp. 168781402110131
Author(s):  
Junfeng Wu ◽  
Li Yao ◽  
Bin Liu ◽  
Zheyuan Ding ◽  
Lei Zhang

As more and more sensor data have been collected, automated detection, and diagnosis systems are urgently needed to lessen the increasing monitoring burden and reduce the risk of system faults. A plethora of researches have been done on anomaly detection, event detection, anomaly diagnosis respectively. However, none of current approaches can explore all these respects in one unified framework. In this work, a Multi-Task Learning based Encoder-Decoder (MTLED) which can simultaneously detect anomalies, diagnose anomalies, and detect events is proposed. In MTLED, feature matrix is introduced so that features are extracted for each time point and point-wise anomaly detection can be realized in an end-to-end way. Anomaly diagnosis and event detection share the same feature matrix with anomaly detection in the multi-task learning framework and also provide important information for system monitoring. To train such a comprehensive detection and diagnosis system, a large-scale multivariate time series dataset which contains anomalies of multiple types is generated with simulation tools. Extensive experiments on the synthetic dataset verify the effectiveness of MTLED and its multi-task learning framework, and the evaluation on a real-world dataset demonstrates that MTLED can be used in other application scenarios through transfer learning.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1590
Author(s):  
Arnak Poghosyan ◽  
Ashot Harutyunyan ◽  
Naira Grigoryan ◽  
Clement Pang ◽  
George Oganesyan ◽  
...  

The main purpose of an application performance monitoring/management (APM) software is to ensure the highest availability, efficiency and security of applications. An APM software accomplishes the main goals through automation, measurements, analysis and diagnostics. Gartner specifies the three crucial capabilities of APM softwares. The first is an end-user experience monitoring for revealing the interactions of users with application and infrastructure components. The second is application discovery, diagnostics and tracing. The third key component is machine learning (ML) and artificial intelligence (AI) powered data analytics for predictions, anomaly detection, event correlations and root cause analysis. Time series metrics, logs and traces are the three pillars of observability and the valuable source of information for IT operations. Accurate, scalable and robust time series forecasting and anomaly detection are the requested capabilities of the analytics. Approaches based on neural networks (NN) and deep learning gain an increasing popularity due to their flexibility and ability to tackle complex nonlinear problems. However, some of the disadvantages of NN-based models for distributed cloud applications mitigate expectations and require specific approaches. We demonstrate how NN-models, pretrained on a global time series database, can be applied to customer specific data using transfer learning. In general, NN-models adequately operate only on stationary time series. Application to nonstationary time series requires multilayer data processing including hypothesis testing for data categorization, category specific transformations into stationary data, forecasting and backward transformations. We present the mathematical background of this approach and discuss experimental results based on implementation for Wavefront by VMware (an APM software) while monitoring real customer cloud environments.


Transport ◽  
2020 ◽  
Vol 35 (5) ◽  
pp. 462-473
Author(s):  
Aleksandar Vorkapić ◽  
Radoslav Radonja ◽  
Karlo Babić ◽  
Sanda Martinčić-Ipšić

The aim of this article is to enhance performance monitoring of a two-stroke electronically controlled ship propulsion engine on the operating envelope. This is achieved by setting up a machine learning model capable of monitoring influential operating parameters and predicting the fuel consumption. Model is tested with different machine learning algorithms, namely linear regression, multilayer perceptron, Support Vector Machines (SVM) and Random Forests (RF). Upon verification of modelling framework and analysing the results in order to improve the prediction accuracy, the best algorithm is selected based on standard evaluation metrics, i.e. Root Mean Square Error (RMSE) and Relative Absolute Error (RAE). Experimental results show that, by taking an adequate combination and processing of relevant sensory data, SVM exhibit the lowest RMSE 7.1032 and RAE 0.5313%. RF achieve the lowest RMSE 22.6137 and RAE 3.8545% in a setting when minimal number of input variables is considered, i.e. cylinder indicated pressures and propulsion engine revolutions. Further, article deals with the detection of anomalies of operating parameters, which enables the evaluation of the propulsion engine condition and the early identification of failures and deterioration. Such a time-dependent, self-adopting anomaly detection model can be used for comparison with the initial condition recorded during the test and sea run or after survey and docking. Finally, we propose a unified model structure, incorporating fuel consumption prediction and anomaly detection model with on-board decision-making process regarding navigation and maintenance.


Sign in / Sign up

Export Citation Format

Share Document