scholarly journals MACHINE LEARNING METHODS IN MONITORING OPERATING BEHAVIOUR OF MARINE TWO-STROKE DIESEL ENGINE

Transport ◽  
2020 ◽  
Vol 35 (5) ◽  
pp. 462-473
Author(s):  
Aleksandar Vorkapić ◽  
Radoslav Radonja ◽  
Karlo Babić ◽  
Sanda Martinčić-Ipšić

The aim of this article is to enhance performance monitoring of a two-stroke electronically controlled ship propulsion engine on the operating envelope. This is achieved by setting up a machine learning model capable of monitoring influential operating parameters and predicting the fuel consumption. Model is tested with different machine learning algorithms, namely linear regression, multilayer perceptron, Support Vector Machines (SVM) and Random Forests (RF). Upon verification of modelling framework and analysing the results in order to improve the prediction accuracy, the best algorithm is selected based on standard evaluation metrics, i.e. Root Mean Square Error (RMSE) and Relative Absolute Error (RAE). Experimental results show that, by taking an adequate combination and processing of relevant sensory data, SVM exhibit the lowest RMSE 7.1032 and RAE 0.5313%. RF achieve the lowest RMSE 22.6137 and RAE 3.8545% in a setting when minimal number of input variables is considered, i.e. cylinder indicated pressures and propulsion engine revolutions. Further, article deals with the detection of anomalies of operating parameters, which enables the evaluation of the propulsion engine condition and the early identification of failures and deterioration. Such a time-dependent, self-adopting anomaly detection model can be used for comparison with the initial condition recorded during the test and sea run or after survey and docking. Finally, we propose a unified model structure, incorporating fuel consumption prediction and anomaly detection model with on-board decision-making process regarding navigation and maintenance.

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Hasan Alkahtani ◽  
Theyazn H. H. Aldhyani ◽  
Mohammed Al-Yaari

Telecommunication has registered strong and rapid growth in the past decade. Accordingly, the monitoring of computers and networks is too complicated for network administrators. Hence, network security represents one of the biggest serious challenges that can be faced by network security communities. Taking into consideration the fact that e-banking, e-commerce, and business data will be shared on the computer network, these data may face a threat from intrusion. The purpose of this research is to propose a methodology that will lead to a high level and sustainable protection against cyberattacks. In particular, an adaptive anomaly detection framework model was developed using deep and machine learning algorithms to manage automatically-configured application-level firewalls. The standard network datasets were used to evaluate the proposed model which is designed for improving the cybersecurity system. The deep learning based on Long-Short Term Memory Recurrent Neural Network (LSTM-RNN) and machine learning algorithms namely Support Vector Machine (SVM), K-Nearest Neighbor (K-NN) algorithms were implemented to classify the Denial-of-Service attack (DoS) and Distributed Denial-of-Service (DDoS) attacks. The information gain method was applied to select the relevant features from the network dataset. These network features were significant to improve the classification algorithm. The system was used to classify DoS and DDoS attacks in four stand datasets namely KDD cup 199, NSL-KDD, ISCX, and ICI-ID2017. The empirical results indicate that the deep learning based on the LSTM-RNN algorithm has obtained the highest accuracy. The proposed system based on the LSTM-RNN algorithm produced the highest testing accuracy rate of 99.51% and 99.91% with respect to KDD Cup’99, NSL-KDD, ISCX, and ICI-Id2017 datasets, respectively. A comparative result analysis between the machine learning algorithms, namely SVM and KNN, and the deep learning algorithms based on the LSTM-RNN model is presented. Finally, it is concluded that the LSTM-RNN model is efficient and effective to improve the cybersecurity system for detecting anomaly-based cybersecurity.


Logistics ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 1 ◽  
Author(s):  
Nikolaos Servos ◽  
Xiaodi Liu ◽  
Michael Teucke ◽  
Michael Freitag

Accurate travel time prediction is of high value for freight transports, as it allows supply chain participants to increase their logistics quality and efficiency. It requires both sufficient input data, which can be generated, e.g., by mobile sensors, and adequate prediction methods. Machine Learning (ML) algorithms are well suited to solve non-linear and complex relationships in the collected tracking data. Despite that, only a minority of recent publications use ML for travel time prediction in multimodal transports. We apply the ML algorithms extremely randomized trees (ExtraTrees), adaptive boosting (AdaBoost), and support vector regression (SVR) to this problem because of their ability to deal with low data volumes and their low processing times. Using different combinations of features derived from the data, we have built several models for travel time prediction. Tracking data from a real-world multimodal container transport relation from Germany to the USA are used for evaluation of the established models. We show that SVR provides the best prediction accuracy, with a mean absolute error of 17 h for a transport time of up to 30 days. We also show that our model performs better than average-based approaches.


Cybersecurity ◽  
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Md. Shafiur Rahman ◽  
Sajal Halder ◽  
Md. Ashraf Uddin ◽  
Uzzal Kumar Acharjee

AbstractAnomaly detection has been an essential and dynamic research area in the data mining. A wide range of applications including different social medias have adopted different state-of-the-art methods to identify anomaly for ensuring user’s security and privacy. The social network refers to a forum used by different groups of people to express their thoughts, communicate with each other, and share the content needed. This social networks also facilitate abnormal activities, spread fake news, rumours, misinformation, unsolicited messages, and propaganda post malicious links. Therefore, detection of abnormalities is one of the important data analysis activities for the identification of normal or abnormal users on the social networks. In this paper, we have developed a hybrid anomaly detection method named DT-SVMNB that cascades several machine learning algorithms including decision tree (C5.0), Support Vector Machine (SVM) and Naïve Bayesian classifier (NBC) for classifying normal and abnormal users in social networks. We have extracted a list of unique features derived from users’ profile and contents. Using two kinds of dataset with the selected features, the proposed machine learning model called DT-SVMNB is trained. Our model classifies users as depressed one or suicidal one in the social network. We have conducted an experiment of our model using synthetic and real datasets from social network. The performance analysis demonstrates around 98% accuracy which proves the effectiveness and efficiency of our proposed system.


2021 ◽  
Author(s):  
Muhammad Aslam Baig ◽  
Donghong XIONG ◽  
Mahfuzur Rahman ◽  
Md. Monirul Islam ◽  
Ahmad Elbeltagi ◽  
...  

Abstract With climate change, hydro-climatic hazards, i.e., floods in the Himalayas regions, are expected to worsen, thus, likely to affect humans and socio-economic growth. Precisely, the Koshi River basin (KRB) is often impacted by flooding over the year. However, studies on estimating and predicting floods still lack in this basin. This study aims at developing flood probability map using machine learning algorithms (MLAs): gaussian process regression (GPR) and support vector machine (SVM) with multiple kernel functions including Pearson VII function kernel (PUK), polynomial, normalized poly kernel, and radial basis kernel function (RBF). Historical flood locations with available topography, hydrogeology, and environmental datasets were further considered to build flood model. Two datasets were carefully chosen to measure the feasibility and robustness of MLAs: training dataset (location of floods between 2010 and 2019) and testing dataset (flood locations of 2020) with thirteen flood influencing factors. The validation of the MLAs was evaluated using a validation dataset and statistical indices such as the coefficient of determination (r2: 0.546~0.995), mean absolute error (MAE: 0.009~0.373), root mean square error (RMSE: 0.051~0.466), relative absolute error (RAE: 1.81~88.55%), and root-relative square error (RRSE: 10.19~91.00%). Results showed that the SVM-Pearson VII kernel (PUK) yielded better prediction than other algorithms. The resultant map from SVM-PUK revealed that 27.99% area with low, 39.91% area with medium, 31.00% with high, and 1.10% area with very high probabilities of flooding in the study area. The final flood probability map could add a greatt value to the effort of flood risk mitigation and planning processes in KRB.


Author(s):  
Gaurav Singh ◽  
Shivam Rai ◽  
Himanshu Mishra ◽  
Manoj Kumar

The prime objective of this work is to predicting and analysing the Covid-19 pandemic around the world using Machine Learning algorithms like Polynomial Regression, Support Vector Machine and Ridge Regression. And furthermore, assess and compare the performance of the varied regression algorithms as far as parameters like R squared, Mean Absolute Error, Mean Squared Error and Root Mean Squared Error. In this work, we have used the dataset available on Covid-19 Data Repository by the Center for Systems Science and Engineering (CSSE) at John Hopkins University. We have analyzed the covid19 cases from 22/1/2020 till now. We applied a supervised machine learning prediction model to forecast the possible confirmed cases for the next ten days.


Now a day’s human relations are maintained by social media networks. Traditional relationships now days are obsolete. To maintain in association, sharing ideas, exchange knowledge between we use social media networking sites. Social media networking sites like Twitter, Facebook, LinkedIn etc are available in the communication environment. Through Twitter media users share their opinions, interests, knowledge to others by messages. At the same time some of the user’s misguide the genuine users. These genuine users are also called solicited users and the users who misguidance are called spammers. These spammers post unwanted information to the non spam users. The non spammers may retweet them to others and they follow the spammers. To avoid this spam messages we propose a methodology by us using machine learning algorithms. To develop our approach used a set of content based features. In spam detection model we used Support vector machine algorithm(SVM) and Naive bayes classification algorithm. To measure the performance of our model we used precision, recall and F measure metrics.


Author(s):  
Divya Choudhary ◽  
Siripong Malasri

This paper implements and compares machine learning algorithms to predict the amount of coolant required during transportation of temperature sensitive products. The machine learning models use trip duration, product threshold temperature and ambient temperature as the independent variables to predict the weight of gel packs need to keep the temperature of the product below its threshold temperature value. The weight of the gel packs can be translated to number of gel packs required. Regression using Neural Networks, Support Vector Regression, Gradient Boosted Regression and Elastic Net Regression are compared. The Neural Networks based model performs the best in terms of its mean absolute error value and r-squared values. A Neural Network model is then deployed on as webservice to score allowing for client application to make rest calls to estimate gel pack weights


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2486
Author(s):  
Vanesa Mateo-Pérez ◽  
Marina Corral-Bobadilla ◽  
Francisco Ortega-Fernández ◽  
Vicente Rodríguez-Montequín

One of the fundamental maintenance tasks of ports is the periodic dredging of them. This is necessary to guarantee a minimum draft that will enable ships to access ports safely. The determination of bathymetries is the instrument that determines the need for dredging and permits an analysis of the behavior of the port bottom over time, in order to achieve adequate water depth. Satellite data processing to predict environmental parameters is used increasingly. Based on satellite data and using different machine learning algorithm techniques, this study has sought to estimate the seabed in ports, taking into account the fact that the port areas are strongly anthropized areas. The algorithms that were used were Support Vector Machine (SVM), Random Forest (RF) and the Multi-Adaptive Regression Splines (MARS). The study was carried out in the ports of Candás and Luarca in the Principality of Asturias. In order to validate the results obtained, data was acquired in situ by using a single beam provided. The results show that this type of methodology can be used to estimate coastal bathymetry. However, when deciding which system was best, priority was given to simplicity and robustness. The results of the SVM and RF algorithms outperform those of the MARS. RF performs better in Candás with a mean absolute error (MAE) of 0.27 cm, whereas SVM performs better in Luarca with a mean absolute error of 0.37 cm. It is suggested that this approach is suitable as a simpler and more cost-effective rough resolution alternative, for estimating the depth of turbid water in ports, than single-beam sonar, which is labor-intensive and polluting.


Algorithms ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 201
Author(s):  
Charlyn Nayve Villavicencio ◽  
Julio Jerison Escudero Macrohon ◽  
Xavier Alphonse Inbaraj ◽  
Jyh-Horng Jeng ◽  
Jer-Guang Hsieh

Early diagnosis is crucial to prevent the development of a disease that may cause danger to human lives. COVID-19, which is a contagious disease that has mutated into several variants, has become a global pandemic that demands to be diagnosed as soon as possible. With the use of technology, available information concerning COVID-19 increases each day, and extracting useful information from massive data can be done through data mining. In this study, authors utilized several supervised machine learning algorithms in building a model to analyze and predict the presence of COVID-19 using the COVID-19 Symptoms and Presence dataset from Kaggle. J48 Decision Tree, Random Forest, Support Vector Machine, K-Nearest Neighbors and Naïve Bayes algorithms were applied through WEKA machine learning software. Each model’s performance was evaluated using 10-fold cross validation and compared according to major accuracy measures, correctly or incorrectly classified instances, kappa, mean absolute error, and time taken to build the model. The results show that Support Vector Machine using Pearson VII universal kernel outweighs other algorithms by attaining 98.81% accuracy and a mean absolute error of 0.012.


Liver malady is an overall medical issue that is related with different inconveniences and high mortality. It is of basic significance that illness be recognized before such huge numbers of these lives can be spared. The phases of liver ailment are a significant viewpoint for focused treatment. It is a terribly troublesome undertaking for therapeutic analysts to foresee the disease inside the beginning times on account of sensitive manifestations. Generally the side effects become evident once it's past the point of no return. To beat this issue, we have liver infection forecast. Liver sickness might be distinguished with incalculable order systems, and these have been classified the utilization forecast of a number highlights and classifier blends. In this investigation, we applied five sort of classifiers that is Naïve Bayes, logistic regression, support vector machines, Random Forest, K Nearest Neighbour for the examination of liver malady. The classification exhibitions are assessed with 5 distinctive by and large execution measurements, i.e., precision, kappa, Mean absolute error (MAE), Root mean square error (RMSE), and F measures. The objective of this query work is to foresee liver infection with different machine learning and pick most efficient algorithm.


Sign in / Sign up

Export Citation Format

Share Document