Ambient Vibration Tests and Modal Response Analysis of an Old Age High-Rise Building in Downtown Vancouver, Canada

Author(s):  
M. Motamedi ◽  
C. E. Ventura ◽  
P. Adebar ◽  
R. A. Murugavel
2018 ◽  
Vol 18 (01) ◽  
pp. 1850005 ◽  
Author(s):  
Pei Liu ◽  
Peng-Yu Lian ◽  
Wei-Guo Yang

Excessive vibrations seriously affected the comfort of residents living on the upper floors of a high-rise shear walled building in Beijing. The ambient vibration tests were conducted to measure the floor acceleration responses, which were found to contain almost periodic signals likely to be excited by vibration sources with frequency of about 1.5[Formula: see text]Hz. The transverse vibration levels of the building above the 8th floor are not acceptable as revealed by the one-third octave spectra and weighted acceleration levels according to the ‘Standard for Allowable Vibration of Building Engineering’ of China. The modal properties of the building are identified by a Bayesian FFT method, indicating that the resonance between the building and the vibration sources caused the excessive vibrations. For comparison, the vibration test of an adjacent building with the same structural design was also conducted, together with modal analysis by the finite element method. It is found that as the story level increases, different trends of amplification in floor root mean square (RMS) acceleration and mode shape component of the two buildings cause different vibration levels. After tests outside the residence community, the main vibration sources were identified to be the working machines in two stone processing factories a few hundred meters away from the building. The vibration tests with measurements in the building and near the vibration sources with different number of machines in the two factories were also conducted. The results show that the vibration levels of the building can be controlled below the acceptance value by reducing the number of machines.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Sergio Vincenzo Calcina ◽  
Laura Eltrudis ◽  
Luca Piroddi ◽  
Gaetano Ranieri

This paper deals with the ambient vibration tests performed in an arch dam in two different working conditions in order to assess the effect produced by two different reservoir water levels on the structural vibration properties. The study consists of an experimental part and a numerical part. The experimental tests were carried out in two different periods of the year, at the beginning of autumn (October 2012) and at the end of winter (March 2013), respectively. The measurements were performed using a fast technique based on asynchronous records of microtremor time-series. In-contact single-station measurements were done by means of one single high resolution triaxial tromometer and two low-frequency seismometers, placed in different points of the structure. The Standard Spectral Ratio method has been used to evaluate the natural frequencies of vibration of the structure. A 3D finite element model of the arch dam-reservoir-foundation system has been developed to verify analytically determined vibration properties, such as natural frequencies and mode shapes, and their changes linked to water level with the experimental results.


1978 ◽  
Vol 104 (5) ◽  
pp. 983-999
Author(s):  
Ahmed M. Abdel-Ghaffar ◽  
George W. Housner

2018 ◽  
Vol 3 (3) ◽  
pp. 39
Author(s):  
Marcos Chávez ◽  
Fernando Peña ◽  
Claudia Cruz ◽  
Gustavo Monroy

This article presents a study on the structural behavior of the Government Building that is part of the old Lecumberri Palace and which currently houses the Mexican General Archive of the Nation. This building was inaugurated in 1900 and closed in 1976, after serving as a prison for 76 years. It was reopened in 1982 after it had undergone several remodeling works. The construction is made of brick masonry with lime mortar. It is supported by a deposit of overly compressible high-plasticity clays. The main problems of this building are the appearance of cracks in both interior and exterior walls, and moisture in the ground floor, caused by differential settlements. The study entailed a geometric and a damage survey as well as ambient vibration tests in order to determine the dynamic properties of the construction. The data obtained was used for the making of a model that, using the finite element method, was analyzed under different load conditions. This study has focused on the overall response with the assumption of smeared crack damage. According to the results, the building’s safety was deemed as acceptable. It has the capability to withstand seismic actions as established by the Mexican Building Code due to the high density of its walls and the resulting stiffness, which infer that the fundamental vibration period of the building would be distant from the predominant vibration period of the soil. This highlights the idea that the building’s critical condition is constituted by the differential settlements, which cause damage in the construction.


Sign in / Sign up

Export Citation Format

Share Document