Analysis of Shanghai Urban Expansion Based on Multi-temporal Remote Sensing Images

Author(s):  
Yi Lin ◽  
Yuan Hu ◽  
Jie Yu
2021 ◽  
Vol 13 (16) ◽  
pp. 3264 ◽  
Author(s):  
Shuang Li ◽  
Zhongqiu Sun ◽  
Yafei Wang ◽  
Yuxia Wang

Studying urban expansion from a longer-term perspective is of great significance to obtain an in-depth understanding of the process of urbanization. Remote sensing data are mostly selected to investigate the long-term expansion of cities. In this study, we selected the world-class urban agglomeration of Beijing-Tianjin-Hebei (BTH) as the study area, and then discussed how to make full use of multi-source, multi-category, and multi-temporal spatial data (old maps and remote sensing images) to study long-term urbanization. Through this study, we addressed three questions: (1) How much has the urban area in BTH expanded in the past 100 years? (2) How did the urban area expand in the past century? (3) What factors or important historical events have changed the development of cities with different functions? By comprehensively using urban spatial data, such as old maps and remote sensing images, geo-referencing them, and extracting built-up area information, a long-term series of urban built-up areas in the BTH region can be obtained. Results show the following: (1) There was clear evidence of dramatic urban expansion in this area, and the total built-up area had increased by 55.585 times, from 126.181 km2 to 7013.832 km2. (2) Continuous outward expansion has always been the main trend, while the compactness of the built-up land within the city is constantly decreasing and the complexity of the city boundary is increasing. (3) Cities in BTH were mostly formed through the construction of city walls during the Ming and Qing dynasties, and the expansion process was mostly highly related to important political events, traffic development, and other factors. In summary, the BTH area, similarly to China and most regions of the world, has experienced rapid urbanization and the history of such ancient cities should be further preserved with the combined use of old maps.


2019 ◽  
pp. 1624-1644
Author(s):  
Gabriele Nolè ◽  
Rosa Lasaponara ◽  
Antonio Lanorte ◽  
Beniamino Murgante

This study deals with the use of satellite TM multi-temporal data coupled with statistical analyses to quantitatively estimate urban expansion and soil consumption for small towns in southern Italy. The investigated area is close to Bari and was selected because highly representative for Italian urban areas. To cope with the fact that small changes have to be captured and extracted from TM multi-temporal data sets, we adopted the use of spectral indices to emphasize occurring changes, and geospatial data analysis to reveal spatial patterns. Analyses have been carried out using global and local spatial autocorrelation, applied to multi-date NASA Landsat images acquired in 1999 and 2009 and available free of charge. Moreover, in this paper each step of data processing has been carried out using free or open source software tools, such as, operating system (Linux Ubuntu), GIS software (GRASS GIS and Quantum GIS) and software for statistical analysis of data (R). This aspect is very important, since it puts no limits and allows everybody to carry out spatial analyses on remote sensing data. This approach can be very useful to assess and map land cover change and soil degradation, even for small urbanized areas, as in the case of Italy, where recently an increasing number of devastating flash floods have been recorded. These events have been mainly linked to urban expansion and soil consumption and have caused loss of human lives along with enormous damages to urban settlements, bridges, roads, agricultural activities, etc. In these cases, remote sensing can provide reliable operational low cost tools to assess, quantify and map risk areas.


Sign in / Sign up

Export Citation Format

Share Document