One Mathematic(s) or Many? Foundations of Mathematics in 20th Century Mathematical Practice

Author(s):  
Andrei Rodin
Author(s):  
Michael Ernst

In the foundations of mathematics there has been an ongoing debate about whether categorical foundations can replace set-theoretical foundations. The primary goal of this chapter is to provide a condensed summary of that debate. It addresses the two primary points of contention: technical adequacy and autonomy. Finally, it calls attention to a neglected feature of the debate, the claim that categorical foundations are more natural and readily useable, and how deeper investigation of that claim could prove fruitful for our understanding of mathematical thinking and mathematical practice.


Philosophy ◽  
2019 ◽  
Author(s):  
Jessica Carter

In contemporary philosophy, “visual thinking in mathematics” refers to studies of the kinds and roles of visual representations in mathematics. Visual representations include both external representations (i.e., diagrams) and mental visualization. Currently, three main areas and questions are being investigated. The first concerns the roles of diagrams, or the diagram-based reasoning, found in Euclid’s Elements. Second is the epistemic role of diagrams: the question of whether reasoning based on diagrams can be rigorous. This debate includes the question of whether beliefs based on visual input can be justified, and whether visual perception may lead to mathematical knowledge. The third observes that diagrams abound in (contemporary) mathematical practice, and so tries to understand the role they play, going beyond the traditional debates on the legitimacy of using diagrams in mathematical proofs. Looking at the history of mathematics, one will find that it is only recently that diagrammatic proofs have become discredited. For about 2,000 years, Euclid’s Elements was conceived as the paradigm of (mathematical) rigorous reasoning, and so until the 18th century, Euclidean geometry served as the foundation of many areas of mathematics. One includes the early history of analysis, where the study of curves draws on results from (Euclidean) geometry. During the 18th and 19th centuries, however, diagrams gradually disappear from mathematical texts, and around 1900 one finds the famous statements of Pasch and Hilbert claiming that proofs must not rely on figures. The development of formal logic during the 20th century further contributed to a general acceptance of a view that the only value of figures, or diagrams, is heuristic, and that they have no place in mathematical rigorous proofs. A proof, according to this view, consists of a discrete sequence of sentences and is a symbolic object. In the latter half of the 20th century, philosophers, sensitive to the practice of mathematics, started to object to this view, leading to the emergence of the study of visual thinking in mathematics.


2006 ◽  
Vol 12 (1) ◽  
pp. 60-99 ◽  
Author(s):  
Bernard Linsky ◽  
Edward N. Zalta

Logicism is a thesis about the foundations of mathematics, roughly, that mathematics is derivable from logic alone. It is now widely accepted that the thesis is false and that the logicist program of the early 20th century was unsuccessful. Frege's [1893/1903] system was inconsistent and the Whitehead and Russell [1910–1913] system was not thought to be logic, given its axioms of infinity, reducibility, and choice. Moreover, both forms of logicism are in some sense non-starters, since each asserts the existence of objects (courses of values, propositional functions, etc.), something which many philosophers think logic is not supposed to do. Indeed, the tension in the idea underlying logicism, that the axioms and theorems of mathematics can be derived as theorems of logic, is obvious: on the one hand, there are numerous existence claims among the theorems of mathematics, while on the other, it is thought to be impossible to prove the existence of anything from logic alone. According to one well-received view, logicism was replaced by a very different account of the foundations of mathematics, in which mathematics was seen as the study of axioms and their consequences in models consisting of the sets described by Zermelo-Fraenkel set theory (ZF). Mathematics, on this view, is just applied set theory.


1991 ◽  
Vol 4 (2) ◽  
pp. 297-319 ◽  
Author(s):  
Joan L. Richards

The ArgumentIt has long been apparent that in the nineteenth century, mathematics in France and England developed along different lines. The differences, which might well be labelled stylistic, are most easy to see on the foundational level. At first this may seem surprising because it is such a fundamental area, but, upon reflection, it is to be expected. Ultimately discussions about the foundations of mathematics turn on views about what mathematics is, and this is a question which is answered by a variety of different groups including mathematicians, students, curricular planners, parents, etc. Mathematical practice rests on some kind of mixture of the answers to this fundamental question which come from these diverse groups. Comparing the cultural matrices which supported mathematics in France and Britain in the first decades of the nineteenth century sheds light on the real though often subtle differences in the ways the subject was pursued in the two countries.


2020 ◽  
Vol 26 (1) ◽  
pp. 26-79
Author(s):  
ARNON AVRON

AbstractHermann Weyl was one of the greatest mathematicians of the 20th century, with contributions to many branches of mathematics and physics. In 1918, he wrote a famous book, “Das Kontinuum”, on the foundations of mathematics. In that book, he described mathematical analysis as a ‘house built on sand’, and tried to ‘replace this shifting foundation with pillars of enduring strength’. In this paper, we reexamine and explain the philosophical and mathematical ideas that underly Weyl’s system in “Das Kontinuum”, and show that they are still useful and relevant. We propose a precise formalization of that system, which is the first to be completely faithful to what is written in the book. Finally, we suggest that a certain set-theoretical modern system reflects better Weyl’s ideas than previous attempts (most notably by Feferman) of achieving this goal.


Author(s):  
V. V. Tselishchev

The article is devoted to the applicability of Wittgenstein’s following the rule in the context of his philosophy of mathematics to real mathematical practice. It is noted that in «Philosophical Investigations» and «Remarks on the Foundations of Mathematics» Wittgenstein resorted to the analysis of rather elementary mathematical concepts, accompanied also by the inherent ambiguity and ambiguity of his presentation. In particular, against this background, his radical conventionalism, the substitution of logical necessity with the «form of life» of the community, as well as the inadequacy of the representation of arithmetic rules by a language game are criticized. It is shown that the reconstruction of the Wittgenstein concept of understanding based on the Fregian division of meaning and referent goes beyond the conceptual framework of Wittgenstein language games.


Sign in / Sign up

Export Citation Format

Share Document