Optimization of Multibody Dynamic Systems using Meta-Model Based Robust Design Optimization

Author(s):  
Thi-Na Ta ◽  
Yunn-Lin Hwang ◽  
Chien-Hsin Chen
Author(s):  
Hoseinali Borhan ◽  
Edmund Hodzen

In this paper, a systematic model-based calibration framework basing on robust design optimization technique is developed for engine control system. In this framework, the control system is calibrated in an optimization fashion where both performance and robustness of the closed-loop system to uncertainties are optimized. The proposed calibration process has three steps: in the first step, the optimal performance of the system at the nominal conditions, where the effects of uncertainties are ignored, is computed by formulation of the controller calibration as an optimization problem. The capabilities of the controller are fully explored at nominal conditions. In the second step, the robustness and sensitivity of a selected control design to the system uncertainties are analyzed using Monte Carlo simulation. In the third step, robust design optimization is applied to optimize both performance and robustness of the closed-loop system to the uncertainties. The robustness capabilities of the controller are fully explored and the one that satisfies both performance and robustness requirements is selected. This process is implemented for the calibration of an advanced diesel air path control system with a variable geometry turbocharger (VGT) and dual loop exhaust gas recirculation (EGR) architecture.


2021 ◽  
pp. 1-17
Author(s):  
Tanmoy Chatterjee ◽  
Michael I. Friswell ◽  
Sondipon Adhikari ◽  
Rajib Chowdhury

Author(s):  
Tanmoy Chatterjee ◽  
Rajib Chowdhury

Robust design optimization (RDO) has been noteworthy in realizing optimal design of engineering systems in presence of uncertainties. However, computations involved in RDO prove to be intensive for real-time applications. For addressing such issues, a meta-model-assisted RDO framework has been proposed. It has been further observed in such approximation-based RDO frameworks that accuracy of the meta-model is an important factor and even slight deviation in intermediate iterations may eventually lead to false optima. Therefore, two-tier improvement has been incorporated within existing Kriging model so as to ensure accurate approximation of response quantities. Firstly, the trend portion has been refined so that the model is capable of approximating higher order non-linearity. Secondly, a sequential basis selection scheme has been merged during model building, which reduces computational complexity significantly in case of large-scale systems. Implementation of the proposed approach in a few examples clearly illustrates its potential for further complex problems.


Author(s):  
Hoseinali Borhan ◽  
Edmund Hodzen

In this paper, a systematic model-based calibration framework basing on robust design optimization technique is developed for engine control system. In this framework, the control system is calibrated in an optimization fashion where both performance and robustness of the closed-loop system to uncertainties are optimized. The proposed calibration process has three steps; in the first step, the optimal performance of the system at the nominal conditions where the effects of uncertainties are ignored is computed by formulation of the controller calibration as an optimization problem. The capabilities of the controller are fully explored at nominal conditions. In the second step, the robustness and sensitivity of a selected control design to the system uncertainties is analyzed using Monte Carlo simulation. In the third step, robust design optimization is applied to optimize both performance and robustness of the closed-loop system to the uncertainties. The robustness capabilities of the controller are fully explored and the one that satisfies both performance and robustness requirements is selected. This process is implemented for the calibration of an advanced Diesel air path control system with a Variable Geometry Turbocharge (VGT) and dual loop EGR architecture.


Author(s):  
Souvik Chakraborty ◽  
Tanmoy Chatterjee ◽  
Rajib Chowdhury ◽  
Sondipon Adhikari

Optimization for crashworthiness is of vast importance in automobile industry. Recent advancement in computational prowess has enabled researchers and design engineers to address vehicle crashworthiness, resulting in reduction of cost and time for new product development. However, a deterministic optimum design often resides at the boundary of failure domain, leaving little or no room for modeling imperfections, parameter uncertainties, and/or human error. In this study, an operational model-based robust design optimization (RDO) scheme has been developed for designing crashworthiness of vehicle against side impact. Within this framework, differential evolution algorithm (DEA) has been coupled with polynomial correlated function expansion (PCFE). An adaptive framework for determining the optimum basis order in PCFE has also been presented. It is argued that the coupled DEA–PCFE is more efficient and accurate, as compared to conventional techniques. For RDO of vehicle against side impact, minimization of the weight and lower rib deflection of the vehicle are considered to be the primary design objectives. Case studies by providing various emphases on the two objectives have also been performed. For all the cases, DEA–PCFE is found to yield highly accurate results.


Sign in / Sign up

Export Citation Format

Share Document