Scientific Discovery and Geomagnetic Monitoring in Earth Orbit Using Small Satellite Systems

Author(s):  
James Green ◽  
David Draper ◽  
Helen Grant ◽  
Jonathan Rall
Frequenz ◽  
2002 ◽  
Vol 56 (3-4) ◽  
Author(s):  
Hebatallah M. Mourad ◽  
Abd El-Aziz M. El-Basioni ◽  
Sherief S. Emam ◽  
Emad K. Al-Hussaini

2021 ◽  
Author(s):  
Sarah Hardacre

The desire to bring space travel to a wider range of missions and uses has driven the market to using smaller and thus more affordable satellite systems. The Canadian Space Agency is completing the design and construction of a small satellite named QuickSat, which will utilize a magnetometer as one of its attitude and orbit determination instruments. A test bed comprised of three pairs of Helmholtz coils was used for hardware in the loop testing of the magnetometer. Testing was initially completed to prove the capabilities of the test bed, and then was completed to demonstrate the capabilities of the flight qualified magnetometer. The three pairs of Helmholtz coils were driven by data calculated from a spherical harmonic model of the Earth's magnetic field The coils were controlled using a robust controller and the magnetometer was used to drive the B-dot control law in the QuickSat simulation. The Ryerson Attitude and Control Experiment (RACE), which is a small satellite sized platform, free to spin about one axis on a near frictionless air bearing, was utilized to develop and test a system to deal with redundancy of satellite sensors. The possibility of missing, noisy or erroneous output during flight requires that a filter be applied to a satellite's flight code to determine with accuracy the attitude and orbit of the spacecraft. It was thus decided that a Kalman Filter be applied to RACE. The Kalman filter was applied to the RACE simulation successfully and initial hardware testing was carried out.


Author(s):  
P. Srinivas ◽  
Kumar Rahasyam ◽  
N. Beebamma ◽  
PSR Srinivasa Sastry

Aerospace ◽  
2020 ◽  
Vol 7 (4) ◽  
pp. 35 ◽  
Author(s):  
Farhan Abdullah ◽  
Kei-ichi Okuyama ◽  
Isai Fajardo ◽  
Naoya Urakami

The low Earth orbit (LEO) environment exposes spacecraft to factors that can degrade the dimensional stability of the structure. Carbon Fibre/Polyether Ether Ketone (CF/PEEK) can limit such degradations. However, there are limited in-orbit data on the performance of CF/PEEK. Usage of small satellite as material science research platform can address such limitations. This paper discusses the design of a material science experiment termed material mission (MM) onboard Ten-Koh satellite, which allows in situ measurements of coefficient of thermal expansion (CTE) for CF/PEEK samples in LEO. Results from ground tests before launch demonstrated the feasibility of the MM design. Analysis of in-orbit data indicated that the CTE values exhibit a non-linear temperature dependence, and there was no shift in CTE values after four months. The acquired in-orbit data was consistent with previous ground tests and in-orbit data. The MM experiment provides data to verify the ground test of CF/PEEK performance in LEO. MM also proved the potential of small satellite as a platform for conducting meaningful material science experiments.


Sign in / Sign up

Export Citation Format

Share Document