orbit data
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 25)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Shunchenqiao Bai ◽  
Guangwei Wen ◽  
Zhaokui Wang

Abstract Atmospheric drag calculation error greatly reduce the low-earth orbit spacecraft trajectory prediction fidelity. To solve the issue, the "correction - prediction" strategy is usually employed. In the method, one parameter is fixed and other parameters are revised by inverting spacecraft orbit data. However, based on a single spacecraft data, the strategy usually performs poorly as parameters in drag force calculation are coupled with each other, which result in convoluted errors. A gravity field recovery and atmospheric density detection satellite, Q-Sat, developed by xxxxx Lab at xxx University, is launched on August 6th, 2020. The satellite is designed to be spherical for a constant drag coefficient regardless of its attitude. An orbit prediction method for low-earth orbit spacecraft with employment of Q-Sat data is proposed in present paper for decoupling atmospheric density and drag coefficient identification process. For the first step, by using a dynamic approach-based inversion, several empirical atmospheric density models are revised based on Q-Sat orbit data. Depends on the performs, one of the revised atmospheric density model would be selected for the next step in which the same inversion is employed for drag coefficient identification for a low-earth orbit operating spacecraft whose orbit needs to be predicted. Finally, orbit forecast is conducted by extrapolation with the dynamic parameters in the previous steps. Tests are carried out for the proposed method by using a GOCE satellite 15-day continuous orbit data. Compared with legacy “correction - prediction” method in which only GOCE data is employed, the accuracy of the 24-hour orbit prediction is improved by about 171m the highest for the proposed method. 14-day averaged 24-hour prediction precision is elevated by approximately 70m.


2021 ◽  
Vol 13 (13) ◽  
pp. 2509
Author(s):  
Yalong Gu ◽  
Slawomir Blonski ◽  
Wenhui Wang ◽  
Sirish Uprety ◽  
Taeyoung Choi ◽  
...  

Due to complex radiometric calibration, the imagery collected by the Day/Night Band (DNB) of the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar Partnership (Suomi-NPP) and the NOAA-20 follow-on satellite is subject to artifacts such as striping, which eventually affect Earth remote sensing applications. Through comprehensive analysis using the NOAA-20 VIIRS DNB prelaunch-test and on-orbit data, it is revealed that the striping results from flaws in the calibration process. In particular, a discrepancy between the low-gain stage (LGS) Earth view (EV) gain and the onboard calibrator solar diffuser view gain makes the operational LGS gain coefficients of a few aggregation modes and detectors biased. Detector nonlinearity at low radiance level also induces errors to the mid-gain stage (MGS) and high-gain stage (HGS) gain through the biased gain ratios. These systematic errors are corrected by scaling the operational LGS gains using the factors derived from the NOAA-20 VIIRS DNB prelaunch test data and by adopting linear regression for evaluating the gain ratios. Striping in the NOAA-20 VIIRS DNB imagery is visibly reduced after the upgraded gain calibration process was implemented in the operational calibration.


2021 ◽  
pp. 238-251
Author(s):  
Ziwei Zhou ◽  
Gaojin Wen ◽  
Yun Xu

Space Weather ◽  
2020 ◽  
Vol 18 (12) ◽  
Author(s):  
Daniel A. Brandt ◽  
Charles D. Bussy‐Virat ◽  
Aaron J. Ridley

Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5667
Author(s):  
Yujie Tang ◽  
Zhenzhong Wei ◽  
Xinguo Wei ◽  
Jian Li ◽  
Gangyi Wang

To achieve photogrammetry without ground control points (GCPs), the precise measurement of the exterior orientation elements for the remote sensing camera is particularly important. Currently, the satellites are equipped with a GPS receiver, so that the accuracy of the line elements of the exterior orientation elements could reach centimeter-level. Furthermore, the high-precision angle elements of the exterior orientation elements could be obtained through a star camera which provides the direction reference in the inertial coordinate system and star images. Due to the stress release during the launch and the changes of the thermal environment, the installation matrix is variable and needs to be recalibrated. Hence, we estimate the cosine angle vector invariance of a remote sensing camera and star camera which are independent of attitude, and then we deal with long-term on-orbit data by using batch processing to realize the accurate calibration of the installation matrix. This method not only removes the coupling of attitude and installation matrix, but also reduces the conversion error of multiple coordinate systems. Finally, the geo-positioning accuracy in planimetry is remarkably higher than the conventional method in the simulation results.


Sign in / Sign up

Export Citation Format

Share Document