Fatigue Characteristic of Linear Friction Welded Ti-6Al-4V Joints

Author(s):  
Hiroshi Kuroki ◽  
Yukihiro Kondo ◽  
Tsukasa Wakabayashi ◽  
Kenji Nakamura ◽  
Kikuo Takamatsu ◽  
...  
2016 ◽  
Vol 879 ◽  
pp. 1800-1806 ◽  
Author(s):  
M. Smith ◽  
L. Bichler ◽  
D. Sediako

Measurement of residual strains by neutron diffraction of linear friction welded Inconel® 718 (IN 718) superalloy acquired from a mid-service aero-engine disk was undertaken in this study. Residual strain and stress throughout the various weld regions including the heat affected zone (HAZ), thermomechanical affected zone (TMAZ) and dynamically recrystallized zone (DRX) were characterized. The residual stresses were observed to increase from the base material to the weld interface, with a peak stress at the weld interface in all orthogonal directions. The trends for residual stress across the weld are in agreement with other work published in literature for solid state welding of aerospace alloys, where high residual stresses were commonly reported at the weld interface.


2007 ◽  
Vol 561-565 ◽  
pp. 1059-1062 ◽  
Author(s):  
H. Takahara ◽  
Masato Tsujikawa ◽  
Sung Wook Chung ◽  
Y. Okawa ◽  
Kenji Higashi

The influence of tool control in non-linear friction stir welding (FSW) on mechanical properties of joints was investigated. FSW is widely applied to linear joints. It is impossible for five axis FSW machines, however, to keep all the FSW parameters in optimum conditions at non-linear welding. Non-linear FSW joints should be made by compromise with the order of priority for FSW parameters. The tensile test results of butt joints with rectangular change in welding direction on plate plane (L-shaped butt joints) with various welding parameter change. It was found that turn to the retreating side is encouraged when welding direction change. And the method of zero inclination tool angle is effective at non-linear and plane welding.


2019 ◽  
Vol 443 ◽  
pp. 328-340 ◽  
Author(s):  
Z. Zhang ◽  
S. Oberst ◽  
J.C.S. Lai
Keyword(s):  

2017 ◽  
Vol 127 ◽  
pp. 342-347 ◽  
Author(s):  
Yina Guo ◽  
Moataz M. Attallah ◽  
Yulung Chiu ◽  
Hangyue Li ◽  
Simon Bray ◽  
...  

2011 ◽  
Vol 314-316 ◽  
pp. 979-983
Author(s):  
Tie Jun Ma ◽  
Xi Chen ◽  
Wen Ya Li

The orthogonal experimental design was conducted for linear friction welding of Ti-6Al-4V titanium alloy (TC4). The friction power and joint temperature were collected during the welding process. The influence of process parameters on the axial shortening was analyzed. The suitable process parameters were determined by investigating the joint appearance, the requirement of axial shortening and welding variables during welding. The results provide important reference for establishing process parameters of linear friction welding in practice.


Sign in / Sign up

Export Citation Format

Share Document