Numerical modelling on the plastic flow and interfacial self-cleaning in linear friction welding of superalloys

Author(s):  
Peihao Geng ◽  
Guoliang Qin ◽  
Hong Ma ◽  
Jun Zhou ◽  
Chunbo Zhang ◽  
...  
2011 ◽  
Vol 314-316 ◽  
pp. 1009-1014
Author(s):  
Ying Jie Wang ◽  
Yong Zhang ◽  
Xu Chao Yuan ◽  
Guo Dong Wen ◽  
Tie Jun Ma ◽  
...  

Abstract. In order to study the plastic flow during linear friction welding (LFW), copper particles were added as tracers on the surface of lead block. The flowing state of interior metal in LFW was simulated by the home-made simulator. Results show that the upset speed promotes the plastic flow of metal and the oscillation frequency restrains it. The upset speed influences the plastic flow of metal more significantly than the oscillation frequency. Only when the pressure reaches 800N and the increasing rate reaches 100N/s, can obvious plastic flow of lead happen in the direction perpendicular to the compression. But the plastic flow of lead in the compression direction is visible even if the pressure and its increasing rate are small.


2021 ◽  
Vol 19 (1) ◽  
pp. 091
Author(s):  
Vladimir A. Skripnyak ◽  
Kristina Iokhim ◽  
Evgeniya Skripnyak ◽  
Vladimir V. Skripnyak

The article presents the results of the analysis of the plastic flow of titanium alloys in the process of the Linear Friction Welding (LFW). LFW is a high-tech process for joining critical structural elements of aerospace engineering from light and high-temperature alloys. Experimental studies of LFW modes of such alloys are expensive and technically difficult. Numerical simulation was carried out for understanding the physics of the LFW process and the formation laws of a strong welded joint of titanium alloys. Simulation by the SPH method was performed using the LS DYNA software package (ANSYS WB 15.2) and the developed module for the constitutive equation. The new coupled thermomechanical 3D model of LFW process for joining structural elements from alpha and alpha + beta titanium alloys was proposed. It was shown that the formation of a welded joint occurs in a complex and unsteady stress-strain state. In the near-surface layers of the bodies being welded, titanium alloys can be deformed in the mode of severe plastic deformation. A deviation of the symmetry plane of the plastic deformation zone from the initial position of the contact plane of the bodies being welded occurs during a process of LFW. Extrusion of material from the welded joint zone in the transverse direction with respect to the movement of bodies is caused by a pressure gradient and a decrease in the alloy flow stress due to heating. The hcp-bcc phase transition of titanium alloys upon heating in the LFW process necessitates an increase in the cyclic loading time to obtain a welded joint.


2013 ◽  
Vol 395-396 ◽  
pp. 1082-1086
Author(s):  
Yong Zhang ◽  
Tao Zhang ◽  
Guo Dong Wen ◽  
Tie Jun Ma

With the self-developed physical simulation equipment of linear friction welding, the plastic flow heat transfer simulation experiment of low melting point Lead metal was implemented. A physical model of plastic flow heat transfer of linear friction welding low melting point metal was established based on the process of the Lead metal plastic flow recorded by high speed digital camera and the Lead metal temperature variation recorded by infrared thermal imager. Introducing the plastic flow element into one-dimensional unsteady heat transfer differential equation, heat transfer mathematical model of plastic zone, perpendicular to the direction of vibration, was proposed. Using finite difference method to solve this mathematical model, calculated value of this model and measured temperature was compared. The results show that the two values correspond basically, which indicates that the proposed model could be used to characterize the process of heat transfer of plastic zone during linear friction welding low melting point metal.


2010 ◽  
Vol 3 (S1) ◽  
pp. 1015-1018 ◽  
Author(s):  
E. Ceretti ◽  
L. Fratini ◽  
C. Giardini ◽  
D. La Spisa

2011 ◽  
Vol 314-316 ◽  
pp. 979-983
Author(s):  
Tie Jun Ma ◽  
Xi Chen ◽  
Wen Ya Li

The orthogonal experimental design was conducted for linear friction welding of Ti-6Al-4V titanium alloy (TC4). The friction power and joint temperature were collected during the welding process. The influence of process parameters on the axial shortening was analyzed. The suitable process parameters were determined by investigating the joint appearance, the requirement of axial shortening and welding variables during welding. The results provide important reference for establishing process parameters of linear friction welding in practice.


Sign in / Sign up

Export Citation Format

Share Document