A Systematic Review on Supervised and Unsupervised Machine Learning Algorithms for Data Science

Author(s):  
Mohamed Alloghani ◽  
Dhiya Al-Jumeily ◽  
Jamila Mustafina ◽  
Abir Hussain ◽  
Ahmed J. Aljaaf
2019 ◽  
Author(s):  
Sun Jae Moon ◽  
Jin Seub Hwang ◽  
Rajesh Kana ◽  
John Torous ◽  
Jung Won Kim

BACKGROUND Over the recent years, machine learning algorithms have been more widely and increasingly applied in biomedical fields. In particular, its application has been drawing more attention in the field of psychiatry, for instance, as diagnostic tests/tools for autism spectrum disorder. However, given its complexity and potential clinical implications, there is ongoing need for further research on its accuracy. OBJECTIVE The current study aims to summarize the evidence for the accuracy of use of machine learning algorithms in diagnosing autism spectrum disorder (ASD) through systematic review and meta-analysis. METHODS MEDLINE, Embase, CINAHL Complete (with OpenDissertations), PsyINFO and IEEE Xplore Digital Library databases were searched on November 28th, 2018. Studies, which used a machine learning algorithm partially or fully in classifying ASD from controls and provided accuracy measures, were included in our analysis. Bivariate random effects model was applied to the pooled data in meta-analysis. Subgroup analysis was used to investigate and resolve the source of heterogeneity between studies. True-positive, false-positive, false negative and true-negative values from individual studies were used to calculate the pooled sensitivity and specificity values, draw SROC curves, and obtain area under the curve (AUC) and partial AUC. RESULTS A total of 43 studies were included for the final analysis, of which meta-analysis was performed on 40 studies (53 samples with 12,128 participants). A structural MRI subgroup meta-analysis (12 samples with 1,776 participants) showed the sensitivity at 0.83 (95% CI-0.76 to 0.89), specificity at 0.84 (95% CI -0.74 to 0.91), and AUC/pAUC at 0.90/0.83. An fMRI/deep neural network (DNN) subgroup meta-analysis (five samples with 1,345 participants) showed the sensitivity at 0.69 (95% CI- 0.62 to 0.75), the specificity at 0.66 (95% CI -0.61 to 0.70), and AUC/pAUC at 0.71/0.67. CONCLUSIONS Machine learning algorithms that used structural MRI features in diagnosis of ASD were shown to have accuracy that is similar to currently used diagnostic tools.


2021 ◽  
Vol 11 (11) ◽  
pp. 5230
Author(s):  
Isabel Santiago ◽  
Jorge Luis Esquivel-Martin ◽  
David Trillo-Montero ◽  
Rafael Jesús Real-Calvo ◽  
Víctor Pallarés-López

In this work, the automatic classification of daily irradiance profiles registered in a photovoltaic installation located in the south of Spain was carried out for a period of nine years, with a sampling frequency of 5 min, and the subsequent analysis of the operation of the elements of the installation on each type of day was also performed. The classification was based on the total daily irradiance values and the fluctuations of this parameter throughout the day. The irradiance profiles were grouped into nine different categories using unsupervised machine learning algorithms for clustering, implemented in Python. It was found that the behaviour of the modules and the inverter of the installation was influenced by the type of day obtained, such that the latter worked with a better average efficiency on days with higher irradiance and lower fluctuations. However, the modules worked with better average efficiency on days with irradiance fluctuations than on clear sky days. This behaviour of the modules may be due to the presence, on days with passing clouds, of the phenomenon known as cloud enhancement, in which, due to reflections of radiation on the edges of the clouds, irradiance values can be higher at certain moments than those that occur on clear sky days, without passing clouds. This is due to the higher energy generated during these irradiance peaks and to the lower temperatures that the module reaches due to the shaded areas created by the clouds, resulting in a reduction in its temperature losses.


2020 ◽  
Author(s):  
Michael Moor ◽  
Bastian Rieck ◽  
Max Horn ◽  
Catherine Jutzeler ◽  
Karsten Borgwardt

Background: Sepsis is among the leading causes of death in intensive care units (ICU) worldwide and its recognition, particularly in the early stages of the disease, remains a medical challenge. The advent of an affluence of available digital health data has created a setting in which machine learning can be used for digital biomarker discovery, with the ultimate goal to advance the early recognition of sepsis. Objective: To systematically review and evaluate studies employing machine learning for the prediction of sepsis in the ICU. Data sources: Using Embase, Google Scholar, PubMed/Medline, Scopus, and Web of Science, we systematically searched the existing literature for machine learning-driven sepsis onset prediction for patients in the ICU. Study eligibility criteria: All peer-reviewed articles using machine learning for the prediction of sepsis onset in adult ICU patients were included. Studies focusing on patient populations outside the ICU were excluded. Study appraisal and synthesis methods: A systematic review was performed according to the PRISMA guidelines. Moreover, a quality assessment of all eligible studies was performed. Results: Out of 974 identified articles, 22 and 21 met the criteria to be included in the systematic review and quality assessment, respectively. A multitude of machine learning algorithms were applied to refine the early prediction of sepsis. The quality of the studies ranged from "poor" (satisfying less than 40% of the quality criteria) to "very good" (satisfying more than 90% of the quality criteria). The majority of the studies (n= 19, 86.4%) employed an offline training scenario combined with a horizon evaluation, while two studies implemented an online scenario (n= 2,9.1%). The massive inter-study heterogeneity in terms of model development, sepsis definition, prediction time windows, and outcomes precluded a meta-analysis. Last, only 2 studies provided publicly-accessible source code and data sources fostering reproducibility. Limitations: Articles were only eligible for inclusion when employing machine learning algorithms for the prediction of sepsis onset in the ICU. This restriction led to the exclusion of studies focusing on the prediction of septic shock, sepsis-related mortality, and patient populations outside the ICU. Conclusions and key findings: A growing number of studies employs machine learning to31optimise the early prediction of sepsis through digital biomarker discovery. This review, however, highlights several shortcomings of the current approaches, including low comparability and reproducibility. Finally, we gather recommendations how these challenges can be addressed before deploying these models in prospective analyses. Systematic review registration number: CRD42020200133


2019 ◽  
Author(s):  
Georgy Kopanitsa ◽  
Aleksei Dudchenko ◽  
Matthias Ganzinger

BACKGROUND It has been shown in previous decades, that Machine Learning (ML) has a huge variety of possible implementations in medicine and can be very helpful. Neretheless, cardiovascular diseases causes about third of of all global death. Does ML work in cardiology domain and what is current progress in that regard? OBJECTIVE The review aims at (1) identifying studies where machine-learning algorithms were applied in the cardiology domain; (2) providing an overview based on identified literature of the state of the art of the ML algorithm applying in cardiology. METHODS For organizing this review, we have employed PRISMA statement. PRISMA is a set of items for reporting in systematic reviews and meta-analyses, focused on the reporting of reviews evaluating randomized trials, but can also be used as a basis for reporting systematic review. For the review, we have adopted PRISMA statement and have identified the following items: review questions, information sources, search strategy, selection criteria. RESULTS In total 27 scientific articles or conference papers written in English and reporting about implementation of an ML-method or algorithm in cardiology domain were included in this review. We have examined four aspects: aims of ML-systems, methods, datasets and evaluation metrics. CONCLUSIONS We suppose, this systematic review will be helpful for researchers developing machine-learning system for a medical domain and in particular for cardiology.


2020 ◽  
Author(s):  
Vincent Caillé ◽  
Anni Määttänen ◽  
Aymeric Spiga ◽  
Lola Falleti ◽  
Gregory A. Neumann

10.2196/22651 ◽  
2020 ◽  
Author(s):  
Alexandre Hudon ◽  
Mélissa Beaudoin ◽  
Kingsada Phraxayavong ◽  
Laura Dellazizzo ◽  
Stéphane Potvin ◽  
...  

Author(s):  
P. Priakanth ◽  
S. Gopikrishnan

The idea of an intelligent, independent learning machine has fascinated humans for decades. The philosophy behind machine learning is to automate the creation of analytical models in order to enable algorithms to learn continuously with the help of available data. Since IoT will be among the major sources of new data, data science will make a great contribution to make IoT applications more intelligent. Machine learning can be applied in cases where the desired outcome is known (guided learning) or the data is not known beforehand (unguided learning) or the learning is the result of interaction between a model and the environment (reinforcement learning). This chapter answers the questions: How could machine learning algorithms be applied to IoT smart data? What is the taxonomy of machine learning algorithms that can be adopted in IoT? And what are IoT data characteristics in real-world which requires data analytics?


Sign in / Sign up

Export Citation Format

Share Document