Real-Time Ultra-Wide Viewing Player for Spatial and Temporal Random Access

Author(s):  
Gicheol Kim ◽  
Haechul Choi
Keyword(s):  
Author(s):  
Jahwan Koo ◽  
Nawab Muhammad Faseeh Qureshi ◽  
Isma Farah Siddiqui ◽  
Asad Abbas ◽  
Ali Kashif Bashir

Abstract Real-time data streaming fetches live sensory segments of the dataset in the heterogeneous distributed computing environment. This process assembles data chunks at a rapid encapsulation rate through a streaming technique that bundles sensor segments into multiple micro-batches and extracts into a repository, respectively. Recently, the acquisition process is enhanced with an additional feature of exchanging IoT devices’ dataset comprised of two components: (i) sensory data and (ii) metadata. The body of sensory data includes record information, and the metadata part consists of logs, heterogeneous events, and routing path tables to transmit micro-batch streams into the repository. Real-time acquisition procedure uses the Directed Acyclic Graph (DAG) to extract live query outcomes from in-place micro-batches through MapReduce stages and returns a result set. However, few bottlenecks affect the performance during the execution process, such as (i) homogeneous micro-batches formation only, (ii) complexity of dataset diversification, (iii) heterogeneous data tuples processing, and (iv) linear DAG workflow only. As a result, it produces huge processing latency and the additional cost of extracting event-enabled IoT datasets. Thus, the Spark cluster that processes Resilient Distributed Dataset (RDD) in a fast-pace using Random access memory (RAM) defies expected robustness in processing IoT streams in the distributed computing environment. This paper presents an IoT-enabled Directed Acyclic Graph (I-DAG) technique that labels micro-batches at the stage of building a stream event and arranges stream elements with event labels. In the next step, heterogeneous stream events are processed through the I-DAG workflow, which has non-linear DAG operation for extracting queries’ results in a Spark cluster. The performance evaluation shows that I-DAG resolves homogeneous IoT-enabled stream event issues and provides an effective stream event heterogeneous solution for IoT-enabled datasets in spark clusters.


2000 ◽  
Vol 619 ◽  
Author(s):  
Y. Gao ◽  
A.H. Mueller ◽  
E.A. Irene ◽  
O. Auciello ◽  
A.R. Krauss ◽  
...  

ABSTRACTAn in situ study of barrier layers using spectroscopic ellipsometry (SE) and Time-of-Flight (ToF) mass spectroscopy of recoiled ions (MSRI) is presented. First the formation of copper silicides has been observed by real-time SE and in situ MSRI in annealed Cu/Si samples. Second TaSiN films as barrier layers for copper interconnects were investigated. Failure of the TaSiN layers in Cu/TaSiN/Si samples was detected by real-time SE during annealing and confirmed by in situ MSRI. The effect of nitrogen concentration on TaSiN film performance as a barrier was also examined. The stability of both TiN and TaSiN films as barriers for electrodes for dynamic random access memory (DRAM) devices has been studied. It is shown that a combination of in situ SE and MSRI can be used to monitor the evolution of barrier layers and detect the failure of barriers in real-time.


Technologies ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 22
Author(s):  
Ramiro Sámano-Robles

This paper investigates backlog retransmission strategies for a class of random access protocols with retransmission diversity (i.e., network diversity multiple access or NDMA) combined with multiple-antenna-based multi-packet reception (MPR). This paper proposes NDMA-MPR as a candidate for 5G contention-based and ultra-low latency multiple access. This proposal is based on the following known features of NDMA-MPR: (1) near collision-free performance, (2) very low latency values, and (3) reduced feedback complexity (binary feedback). These features match the machine-type traffic, real-time, and dense object connectivity requirements in 5G. This work is an extension of previous works using a multiple antenna receiver with correlated Rice channels and co-channel interference modelled as a Rayleigh fading variable. Two backlog retransmission strategies are implemented: persistent and randomized. Boundaries and extended analysis of the system are here obtained for different network and channel conditions. Average delay is evaluated using the M/G/1 queue model with statistically independent vacations. The results suggest that NDMA-MPR can achieve very low values of latency that can guarantee real- or near-real-time performance for multiple access in 5G, even in scenarios with high correlation and moderate co-channel interference.


Micromachines ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 371 ◽  
Author(s):  
Sunhwa Nam ◽  
Kyungwoon Cho ◽  
Hyokyung Bahn

A power-saving approach for real-time systems that combines processor voltage scaling and task placement in hybrid memory is presented. The proposed approach incorporates the task’s memory placement problem between the DRAM (dynamic random access memory) and NVRAM (nonvolatile random access memory) into the task model of the processor’s voltage scaling and adopts power-saving techniques for processor and memory selectively without violating the deadline constraints. Unlike previous work, our model tightly evaluates the worst-case execution time of a task, considering the time delay that may overlap between the processor and memory, thereby reducing the power consumption of real-time systems by 18–88%.


1995 ◽  
Vol 18 (3) ◽  
pp. 145-159 ◽  
Author(s):  
Jonathan CL Liu ◽  
David HC Du ◽  
James A Schnepf

Sign in / Sign up

Export Citation Format

Share Document