Lognormal Distribution

Author(s):  
M. Glòria Mateu-Figueras ◽  
Ricardo A. Olea
BMJ Open ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. e039652 ◽  
Author(s):  
Conor McAloon ◽  
Áine Collins ◽  
Kevin Hunt ◽  
Ann Barber ◽  
Andrew W Byrne ◽  
...  

ObjectivesThe aim of this study was to conduct a rapid systematic review and meta-analysis of estimates of the incubation period of COVID-19.DesignRapid systematic review and meta-analysis of observational research.SettingInternational studies on incubation period of COVID-19.ParticipantsSearches were carried out in PubMed, Google Scholar, Embase, Cochrane Library as well as the preprint servers MedRxiv and BioRxiv. Studies were selected for meta-analysis if they reported either the parameters and CIs of the distributions fit to the data, or sufficient information to facilitate calculation of those values. After initial eligibility screening, 24 studies were selected for initial review, nine of these were shortlisted for meta-analysis. Final estimates are from meta-analysis of eight studies.Primary outcome measuresParameters of a lognormal distribution of incubation periods.ResultsThe incubation period distribution may be modelled with a lognormal distribution with pooled mu and sigma parameters (95% CIs) of 1.63 (95% CI 1.51 to 1.75) and 0.50 (95% CI 0.46 to 0.55), respectively. The corresponding mean (95% CIs) was 5.8 (95% CI 5.0 to 6.7) days. It should be noted that uncertainty increases towards the tail of the distribution: the pooled parameter estimates (95% CIs) resulted in a median incubation period of 5.1 (95% CI 4.5 to 5.8) days, whereas the 95th percentile was 11.7 (95% CI 9.7 to 14.2) days.ConclusionsThe choice of which parameter values are adopted will depend on how the information is used, the associated risks and the perceived consequences of decisions to be taken. These recommendations will need to be revisited once further relevant information becomes available. Accordingly, we present an R Shiny app that facilitates updating these estimates as new data become available.


2014 ◽  
Vol 530-531 ◽  
pp. 768-772
Author(s):  
Guo Ping Tan ◽  
Lin Feng Tan ◽  
Lei Cao ◽  
Mei Yan Ju

For the study of the applications of partial network coding based real-time multicast protocol (PNCRM) in Mobile Ad hoc networks, the researches should be developed in the probability distribution of delay. In this paper, NS2 is used to obtain the delay of data packets through simulations. Because the delay does not obey the strict normal distribution, the maximum likelihood estimate method based on the lognormal distribution is used to process the data. Using MATLAB to obtain the actual distribution of the natural logarithm of delay, then drawing the delay distribution with the maximum likelihood estimation method based on the lognormal distribution, the conclusion that the distributions obtained by the above mentioned methods are basically consistent can be obtained. So the delay distribution of PNCRM meets the lognormal distribution and the characteristic of delay probability distribution can be estimated.


Sign in / Sign up

Export Citation Format

Share Document