Synthetic Biology and Risk Regulation: The Case of Singapore

Author(s):  
Benjamin D. Trump ◽  
George Siharulidze ◽  
Christopher L. Cummings
Planta Medica ◽  
2013 ◽  
Vol 79 (13) ◽  
Author(s):  
A Sarrion-Perdigones ◽  
M Vazquez-Vilar ◽  
J Palaci ◽  
A Granell ◽  
D Orzáez

Somatechnics ◽  
2012 ◽  
Vol 2 (2) ◽  
pp. 250-262 ◽  
Author(s):  
Oron Catts ◽  
Ionat Zurr

The paper discusses and critiques the concept of the single engineering paradigm. This concepts allude to a future in which the control of matter and life, and life as matter, will be achieved by applying engineering principles; through nanotechnology, synthetic biology and, as some suggest, geo-engineering, cognitive engineering and neuro-engineering. We outline some issues in the short history of the field labelled as Synthetic Biology. Furthermore; we examine the way engineers, scientists, designers and artists are positioned and articulating the use of the tools of Synthetic Biology to expose some of the philosophical, ethical and political forces and considerations of today as well as some future scenarios. We suggest that one way to enable the possibilities of alternative frames of thought is to open up the know-how and the access to these technologies to other disciplines, including artistic.


2016 ◽  
Vol 23 (2) ◽  
pp. 159-174
Author(s):  
William Daley
Keyword(s):  

Author(s):  
David Vogel

This book examines the politics of consumer and environmental risk regulation in the United States and Europe over the last five decades, explaining why America and Europe have often regulated a wide range of similar risks differently. It finds that between 1960 and 1990, American health, safety, and environmental regulations were more stringent, risk averse, comprehensive, and innovative than those adopted in Europe. But since around 1990 global regulatory leadership has shifted to Europe. What explains this striking reversal? This book takes an in-depth, comparative look at European and American policies toward a range of consumer and environmental risks, including vehicle air pollution, ozone depletion, climate change, beef and milk hormones, genetically modified agriculture, antibiotics in animal feed, pesticides, cosmetic safety, and hazardous substances in electronic products. The book traces how concerns over such risks—and pressure on political leaders to do something about them—have risen among the European public but declined among Americans. The book explores how policymakers in Europe have grown supportive of more stringent regulations while those in the United States have become sharply polarized along partisan lines. And as European policymakers have grown more willing to regulate risks on precautionary grounds, increasingly skeptical American policymakers have called for higher levels of scientific certainty before imposing additional regulatory controls on business.


2018 ◽  
Vol 27 (3) ◽  
pp. i-vii
Author(s):  
Luisa Damiano ◽  
◽  
Yutetsu Kuruma ◽  
Pasquale Stano ◽  
◽  
...  

2019 ◽  
Author(s):  
Thomas Siemon ◽  
Zhangqian Wang ◽  
Guangkai Bian ◽  
Tobias Seitz ◽  
Ziling Ye ◽  
...  

Herein, we report the semisynthetic production of the potent transient receptor potential canonical (TRPC) channel agonist (−)-englerin A (EA), using guaia-6,10(14)-diene as the starting material. Guaia-6,10(14)-diene was systematically engineered in Escherichia coli and Saccharomyces cerevisiae using the CRISPR/Cas9 system and produced with high titers. This provided us the opportunity to execute a concise chemical synthesis of EA and the two related guaianes (−)-oxyphyllol and (+)-orientalol E. The potentially scalable approach combines the advantages of synthetic biology and chemical synthesis and provides an efficient and economical method for producing EA as well as its analogs.


2019 ◽  
Author(s):  
Thomas Siemon ◽  
Zhangqian Wang ◽  
Guangkai Bian ◽  
Tobias Seitz ◽  
Ziling Ye ◽  
...  

Herein, we report the semisynthetic production of the potent transient receptor potential canonical (TRPC) channel agonist (−)-englerin A (EA), using guaia-6,10(14)-diene as the starting material. Guaia-6,10(14)-diene was systematically engineered in Escherichia coli and Saccharomyces cerevisiae using the CRISPR/Cas9 system and produced with high titers. This provided us the opportunity to execute a concise chemical synthesis of EA and the two related guaianes (−)-oxyphyllol and (+)-orientalol E. The potentially scalable approach combines the advantages of synthetic biology and chemical synthesis and provides an efficient and economical method for producing EA as well as its analogs.


Sign in / Sign up

Export Citation Format

Share Document