Igneous Rocks of the Kachinsk-Shumikhinsky Magmatic Area of Late Ordovician-Early Silurian Age (East Sayan)

Author(s):  
O. Yu. Perfilova ◽  
A. M. Sazonov ◽  
M. L. Makhlaev ◽  
A. A. Vorontsov
2019 ◽  
Vol 61 (15) ◽  
pp. 1940-1956 ◽  
Author(s):  
Yongzhen Long ◽  
Dexian Zhang ◽  
Dezhi Huang ◽  
Xiaoyong Yang ◽  
Shanshan Chen ◽  
...  

1992 ◽  
Vol 29 (7) ◽  
pp. 1430-1447 ◽  
Author(s):  
J. A. Winchester ◽  
C. R. van Staal ◽  
J. P. Langton

An investigation of the geology and chemistry of the basic igneous rocks in the Elmtree and Belledune inliers in northern New Brunswick shows that the bulk of the Middle Ordovician rocks of the ophiolitic Fournier Group are best interpreted as the products of volcanism and sedimentation in an extensive ensimatic back-arc basin southeast of a volcanic arc. The oceanic back-arc-basin igneous rocks form the basement to renewed arc-related basaltic volcanism in late Middle to Late Ordovician time. The Fournier Group is separated from the structurally-underlying, shale-dominated Elmtree Formation of the Tetagouche Group by an extensive tectonic melange, which incorporates lenses of serpentinite, mafic volcanic rocks, and sedimentary rocks of both the Tetagouche and Fournier groups. The mafic volcanic rocks in the Elmtree Formation correlate best with those intercalated with the lithologically similar sediments of the Llandeilian–Caradocian Boucher Brook Formation in the northern Miramichi Highlands. The melange and the present structural amalgamation of the Tetagouche and Fournier groups result from closure of the marginal basin by northward-directed subduction at the end of the Ordovician. Most mafic suites in the Elmtree and Belledune inliers can be chemically correlated with similar suites in the northern Miramichi Highlands, showing that the two areas are not separated by a terrane boundary.


1993 ◽  
Vol 130 (5) ◽  
pp. 647-656 ◽  
Author(s):  
T. C. Pharaoh ◽  
T. S. Brewer ◽  
P. C. Webb

AbstractDeep boreholes show that plutonic and volcanic igneous rocks comprise an important component of the Caledonian basement in eastern England. The isotopic compositions of these rocks reveal that many of them are of late Ordovician age (440–460 Ma), and their geochemical compositions suggest calc–alkaline affinities. The intermediate (diorite-tonalite) plutonic rocks are associated with a prominent northwest–southeast trending belt of aeromagnetic anomalies extending from Derby to St Ives, Hunts., which is interpreted to work the plutonic core of a calc-alkaline magmatic arc. It is inferred that this arc was generated by the subduction of oceanic lithosphere, possibly from the Tornquist Sea, in a south or southwest direction beneath the Midlands Microcraton in late Ordovician times. The age and geochemical composition of concealed Ordovician volcanic rocks in eastern England, and hypabyssal intrusions of the Midlands Minor Intrusive Suite in central England, is compatible with such a hypothesis.


1996 ◽  
Vol 33 (3) ◽  
pp. 379-388 ◽  
Author(s):  
J. Brendan Murphy ◽  
J. Duncan Keppie ◽  
Mary Pat Cude ◽  
Jarda Dostal ◽  
John W. F. Waldron

Avalonia is a terrane that accreted to Laurentia–Baltica during the development of the Appalachian–Caledonide Orogen. Interpretations of the timing of accretion have been constrained by comparing faunal affinities, overstep sequences, age and kinematics of inferred accretionary deformational events, and controversial paleomagnetic data. We show that the time of accretion of Avalonia may also be constrained by contrasts in the geochemical and isotopic signatures of its igneous rocks (which reflect the characteristics of the underlying continental basement and mantle) and sedimentary rocks (which reflect provenance). Early Silurian clastic sedimentary rocks of the Beechill Cove Formation, Antigonish Highlands, Nova Scotia, were deposited on Avalonian crust. The formation predominantly consists of approximately 80 m of siltstones and shales deposited in a nearshore environment and derived from the northeast. Their age is constrained by paleontological data and by directly underlying Late Ordovician – Early Silurian bimodal volcanic rocks that have typically Avalonian geochemical signatures. In comparison with typical Avalonian rocks, the Beechill Cove sediments are characterized by high SiO2, Ce/Yb, and initial 87Sr/86Sr, low Fe2O3, MgO, and TiO2, and strongly negative εNd(ur). These characteristics cannot be attributed to erosion of underlying Avalonian basement or coeval volcanic rocks and are consistent with derivation via significant transport from radiogenically enriched continental crust. εNd data are typical of Grenvillian basement compositions and suggest that the Beechill Cove sedimentary rocks were derived from an adjacent landmass with Grenvillian crust. The data, in conjunction with paleocontinental reconstructions and recent geochronological and structural data from the northern Appalachians, suggest that the Caledonide orogenic belt is the most likely source. Deposition of the Beechill Cove Formation is inferred to have occurred in an intracontinental basin associated with strike-slip tectonics during the oblique collision of the Avalon with Laurentia–Baltica.


Sign in / Sign up

Export Citation Format

Share Document