tectonic mélange
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 24)

H-INDEX

20
(FIVE YEARS 4)

Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1171
Author(s):  
Katarzyna Jarmołowicz-Szulc ◽  
Leszek Jankowski

Quartz, carbonates and other minerals as e.g., realgar are present in veins and caverns in sedimentary rocks in the Western Carpathians. In the Polish segment, they have been characterized from the mineralogical, petrologic, and geochemical points of view, as well as fluid inclusions. Their characters are discussed from perspective of a description of particular types of chaotic complexes—the tectonic mélange zones, distinguished in the Western Carpathian area over the last two decades. The mélange zones are considered to be geochemical systems open to fluid flow, a site for mineral crystallization and/or migration zones of hydrocarbons and mineralized waters. In this context the tectonic mélange in the Jabłonki/Rabe vicinity (SE Poland, the Bieszczady region) in comparison to that of the Mszana Dolna tectonic window area are proposed as the examples. The trapping conditions of fluids (brine and methane) in the minerals in the mélange zones appear to have been 180–205 °C and ~550–570 bars, and 220 °C and 500 bars for calcite and quartz, respectively. The general trend of the increase in temperatures and pressures from west towards east and south-east in the mélange zones points to an increase in the degree of exhumation of different parts of the Carpathians.


2021 ◽  
Author(s):  
John Wakabayashi

ABSTRACT Field relationships in the Franciscan Complex of California suggest localization of subduction slip in narrow zones (≤300 m thick) at the depths of ∼10–80 km. Accretionary and non-accretionary subduction slip over the ca. 150 Ma of Franciscan history was accommodated across the structural thickness of the complex (maximum of ∼30 km). During accretion of a specific unit (<5 Ma), subduction slip (accretionary subduction slip) deformed the full thickness of the accreting unit (≤5 km), primarily on discrete faults of <20 m in thickness, with the remainder accommodated by penetrative deformation. Some faults accommodating accretionary subduction slip formed anastomosing zones ≤200 m thick that resulted in block-in-matrix (tectonic mélange) relationships but did not emplace exotic blocks. Mélange horizons with exotic blocks range in thickness from 0.5 m to 1 km. These apparently formed by sedimentary processes as part of the trench fill prior to subsequent deformation during subduction-accretion. Accretionary subduction slip was localized within some of these mélanges in zones ≤300 m thick. Such deformation obscured primary sedimentary textures. Non-accretionary subduction faults separate units accreted at different times, but these <100-m-thick fault zones capture a small fraction of associated subduction slip because of footwall subduction and likely removal of hanging wall by subduction erosion. Most exhumation was accommodated by discrete faults ≤30 m thick. Structural, geochronologic, and plate motion data suggest that of the ∼13,000 km of subduction during the ca. 150 Ma assembly of the Franciscan Complex, ∼2000 km was associated with accretion.


Author(s):  
Qi Zhao ◽  
Yi Yan ◽  
Satoshi Tonai ◽  
Naotaka Tomioka ◽  
Peter D. Clift ◽  
...  

The timing of subduction is a fundamental tectonic problem for tectonic models, yet there are few direct geological proxies for constraining it. However, the matrix of a tectonic mélange formed in a subduction-accretion setting archives the physical/chemical attributes at the time of deformation during the subduction-accretion process. Thus, the deformation age of the matrix offers the possibility to directly constrain the period of the subduction-accretion process. Here we date the Lubok Antu tectonic mélange and the overlying Lupar Formation in West Sarawak, Borneo by K-Ar analysis of illite. The ages of authigenic illite cluster around 60 Ma and 36 Ma. The maximum temperatures calculated by vitrinite reflectance values suggest that our dating results were not affected by external heating. Thus, the ages of authigenic illite represent the deformation age of the mélange matrix and the timing of the Rajang Unconformity, indicating that the subduction in Sarawak could have continued until ca. 60 Ma and the thermal and/or fluid flow events triggered by a major uplift of the Rajang Group occurred at ca. 36 Ma. Furthermore, this study highlights the potential of using the tectonic mélange to extract the timeframe of subduction zone episodic evolution directly.


Author(s):  
Lijun Wang ◽  
Kexin Zhang ◽  
Shoufa Lin ◽  
Weihong He ◽  
Leiming Yin

When and how the Yangtze Block (Yangtze) and the West Cathaysia terrane (West Cathaysia) in South China were amalgamated are critical to a better understanding of the Neoproterozoic to early Paleozoic tectonic evolution of South China and remain highly debatable. A key to this debate is the tectonic significance of the Jiangshan-Shaoxing-Pingxiang (JSP) Fault, the boundary between Yangtze and West Cathaysia. The Shenshan mélange along the JSP Fault has the typical block-in-matrix structure and is composed of numerous shear zone-bounded slivers/lenses of rocks of different types and ages that formed in different tectonic environments, including middle to late Tonian volcanic and volcanogenic sedimentary rocks (turbidite) of arc/back-arc affinity, a series of middle Tonian ultramafic to mafic plutonic rocks of oceanic island basalt affinity, a carbonaceous shale that was deposited in a deep marine environment, and a red mudstone. U-Pb zircon ages and acritarch assemblages (Leiosphaeridia-Brocholaminaria association) found in the turbidite confirm its Tonian age, and fossils from the carbonaceous shale (Asteridium-Comasphaeridium and Skiagia-Celtiberium-Leiofusa) constrains its age to the Early to Middle Cambrian. Field relationships and available age data leave no doubt that the ultramafic-mafic rocks are exotic blocks (rather than intrusions) in the younger metasedimentary rocks. We conclude that the Shenshan mélange is not an ophiolitic mélange, but rather a tectonic mélange that formed as a result of movement along the JSP Fault in the early Paleozoic. We suggest that Yangtze and West Cathaysia were two separate microcontinents, were accreted to two different parts of the northern margin of Gondwana in the early Early Paleozoic, and juxtaposed in the late Early Paleozoic through strike-slip movement along the JSP Fault. We further suggest that the ca. 820 Ma collision in the Jiangnan Orogen took place between Yangtze and a (micro)continent that is now partly preserved as the Huaiyu terrane and was not related to West Cathaysia. We compare our model for South China with the accretion of terranes in the North American Cordillera and propose a similar model for the relationship between the Avalon and Meguma terranes in the Canadian Appalachians, i.e., the two terranes were accreted to two different parts of the Laurentian margin and were later juxtaposed through margin-parallel strike slip faulting.


2021 ◽  
Author(s):  
Lijun Wang ◽  
Shoufa Lin ◽  
et al.

Photos of acritarchs, table of U-Pb zircon data and results of mixture modeling of U-Pb zircon data from the Shenshan tectonic mélange of South China.


2021 ◽  
Author(s):  
Lijun Wang ◽  
Shoufa Lin ◽  
et al.

Photos of acritarchs, table of U-Pb zircon data and results of mixture modeling of U-Pb zircon data from the Shenshan tectonic mélange of South China.


Minerals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 836
Author(s):  
Zuozhen Han ◽  
Jingjing Li ◽  
Zhigang Song ◽  
Guyao Liu ◽  
Wenjian Zhong ◽  
...  

The Late Paleozoic–Early Mesozoic tectonic evolution of the Changchun-Yanji suture (CYS) was mainly associated with the Paleo-Asian and Mudanjiang tectonic regimes. However, the spatial and temporal overprinting and variations of these two regimes remains are still dispute. In order to evaluate this issue, in this contribution, we present new zircon U-Pb ages and a whole-rock geochemical and zircon Hf isotopic dataset on a suite of metamorphic rocks, including gneisses, actinolite schist, leptynites, and biotite schists, from tectonic mélanges in northern Liaoning and central Jilin provinces, NE China. Based on zircon LA-ICP-MS U-Pb dating results, protoliths show wide ranges of aging spectrum, including Paleoproterozoic (2441 Ma), Early Permian (281 Ma), Late Permian (254 Ma), and Late Triassic (230 Ma). The Permian protoliths of leptynites from the Hulan Tectonic Mélange (HLTM) and gneisses from the Kaiyuan Tectonic Mélange (KYTM) exhibit arc-related geochemical signatures, implying that the Paleo-Asian Ocean (PAO) did not close prior to the Late Permian. The Late Triassic protoliths of gneisses from the KYTM, in combination with previously reported coeval igneous rocks along the CYS, comprises a typical bimodal igneous suite in an E–W-trending belt, suggesting a post-orogenic extensional environment. Consequently, we infer that the final closure of the PAO took place during the Early–Middle Triassic. The Early Permian protoliths of biotite schists from the HLTM are alkali basaltic rocks and contain multiple older inherited zircons, which, in conjunction with the geochemical features of the rocks, indicate that they were generated in a continental rift related to the initial opening of the Mudanjiang Ocean (MO). Data from this contribution and previous studies lead us to conclude that the MO probably opened during the Middle Triassic, due to the north–south trending compression caused by the final closure of the PAO.


2020 ◽  
Vol 138 ◽  
pp. 104086
Author(s):  
Luca Smeraglia ◽  
Luca Aldega ◽  
Stefano M. Bernasconi ◽  
Andrea Billi ◽  
Chiara Boschi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document