scholarly journals Modular Gaussian curvature

Author(s):  
Matthias Lesch ◽  
Henri Moscovici
Keyword(s):  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nikolaos Vasios ◽  
Bolei Deng ◽  
Benjamin Gorissen ◽  
Katia Bertoldi

AbstractMulti-welled energy landscapes arising in shells with nonzero Gaussian curvature typically fade away as their thickness becomes larger because of the increased bending energy required for inversion. Motivated by this limitation, we propose a strategy to realize doubly curved shells that are bistable for any thickness. We then study the nonlinear dynamic response of one-dimensional (1D) arrays of our universally bistable shells when coupled by compressible fluid cavities. We find that the system supports the propagation of bidirectional transition waves whose characteristics can be tuned by varying both geometric parameters as well as the amount of energy supplied to initiate the waves. However, since our bistable shells have equal energy minima, the distance traveled by such waves is limited by dissipation. To overcome this limitation, we identify a strategy to realize thick bistable shells with tunable energy landscape and show that their strategic placement within the 1D array can extend the propagation distance of the supported bidirectional transition waves.


Author(s):  
Wojciech Szumiński ◽  
Andrzej J. Maciejewski

AbstractIn the paper [1], the author formulates in Theorem 2 necessary conditions for integrability of a certain class of Hamiltonian systems with non-constant Gaussian curvature, which depends on local coordinates. We give a counterexample to show that this theorem is not correct in general. This contradiction is explained in some extent. However, the main result of this note is our theorem that gives new simple and easy to check necessary conditions to integrability of the system considered in [1]. We present several examples, which show that the obtained conditions are effective. Moreover, we justify that our criterion can be extended to wider class of systems, which are given by non-meromorphic Hamiltonian functions.


1995 ◽  
Vol 117 (1) ◽  
pp. 153-160
Author(s):  
Kanghui Guo

Let S(Rn) be the space of Schwartz class functions. The dual space of S′(Rn), S(Rn), is called the temperate distributions. In this article, we call them distributions. For 1 ≤ p ≤ ∞, let FLp(Rn) = {f:∈ Lp(Rn)}, then we know that FLp(Rn) ⊂ S′(Rn), for 1 ≤ p ≤ ∞. Let U be open and bounded in Rn−1 and let M = {(x, ψ(x));x ∈ U} be a smooth hypersurface of Rn with non-zero Gaussian curvature. It is easy to see that any bounded measure σ on Rn−1 supported in U yields a distribution T in Rn, supported in M, given by the formula


1972 ◽  
Vol 72 (3) ◽  
pp. 489-498 ◽  
Author(s):  
R. Cade

AbstractAn existence theorem is proved for Robin's integral equation for the density of electric charge on a closed surface, under the assumptions that the surface is convex, smooth and twice continuously differentiable. The technique is essentially Neumann's method of the arithmetic mean, used by Robin himself to show that the solution, assumed to exist, can be successively approximated by a sequence. In order to facilitate the main argument of the proof, it is assumed initially that the Gaussian curvature is everywhere positive, but this restriction is subsequently removed.


2001 ◽  
Vol 42 (3) ◽  
pp. 312-323
Author(s):  
A. R. Selvaratnam ◽  
M. Vlieg-Hulstman ◽  
B. van-Brunt ◽  
W. D. Halford

AbstractGauss' Theorema Egregium produces a partial differential equation which relates the Gaussian curvature K to components of the metric tensor and its derivatives. Well-known partial differential equations (PDEs) such as the Schrödinger equation and the sine-Gordon equation can be derived from Gauss' equation for specific choices of K and coördinate systems. In this paper we consider a class of Bäcklund Transformations which corresponds to coördinate transformations on surfaces with a given Gaussian curvature. These Bäcklund Transformations lead to the construction of solutions to certain classes of non-linear second order PDEs of hyperbolic type by identifying these PDEs as the Gauss equation in some coördinate system. The possibility of solving the Cauchy Problem has also been explored for these classes of equations.


Sign in / Sign up

Export Citation Format

Share Document