A Nonstandard Solution of the Fermionic Mass Hierarchy

Author(s):  
Gauhar Abbas
Keyword(s):  
2012 ◽  
Vol 85 (1) ◽  
Author(s):  
Dilip Kumar Ghosh ◽  
R. S. Hundi

2010 ◽  
Vol 25 (32) ◽  
pp. 5897-5911 ◽  
Author(s):  
JOSÉ BORDES ◽  
HONG-MO CHAN ◽  
SHEUNG TSUN TSOU

It is shown that in the scheme with a rotating fermion mass matrix (i.e. one with a scale-dependent orientation in generation space) suggested earlier for explaining fermion mixing and mass hierarchy, the theta angle term in the QCD action of topological origin can be eliminated by chiral transformations, while giving still nonzero masses to all quarks. Instead, the effects of such transformations get transmitted by the rotation to the CKM matrix as the KM phase giving, for θ of order unity, a Jarlskog invariant typically of order 10-5, as experimentally observed. Strong and weak CP violations appear then as just two facets of the same phenomenon.


2008 ◽  
Vol 23 (17n20) ◽  
pp. 1409-1418 ◽  
Author(s):  
TOSHITAKA KAJINO ◽  
TAKAHIRO SASAQUI ◽  
TAKASHI YOSHIDA ◽  
WAKO AOKI

Neutrinos play the critical roles in nucleosyntheses of light-to-heavy mass elements in core-collapse supernovae (SNe). The light element synthesis is affected strongly by neutrino oscillations (MSW effect) through the ν-process in outer layers of supernova explosions. Specifically the 7 Li and 11 B yields increase by factors of 1.9 and 1.3 respectively in the case of large mixing angle solution, normal mass hierarchy, and sin 2 2θ13 = 2 × 10−3 compared to those without the oscillations. In the case of inverted mass hierarchy or nonadiabatic 13-mixing resonance, the increment of their yields is much smaller. We thus propose that precise constraint on mass hierarchy and sin 2 2θ13 is given by future observations of Li / B ratio or Li abundance in stars and presolar grains which are made from supernova ejecta. Gamma ray burst (GRB) nucleosynthesis in contrast is not affected strongly by thermal neutrinos from the central core which culminates in black hole (BH), although the effect of neutrinos from proto-neutron star prior to black hole formation is still unknown. We calculate GRB nucleosynthesis by turning off the thermal neutrinos and find that the abundance pattern is totally different from ordinary SN nucleosynthesis which satisfies the universality to the solar abundance pattern.


1984 ◽  
Vol 134 (6) ◽  
pp. 425-428 ◽  
Author(s):  
Jihn E. Kim ◽  
Murat Özer
Keyword(s):  

2008 ◽  
Vol 78 (3) ◽  
Author(s):  
Luis F. Duque ◽  
Diego A. Gutierrez ◽  
Enrico Nardi ◽  
Jorge Noreña

1999 ◽  
Vol 14 (14) ◽  
pp. 2173-2203 ◽  
Author(s):  
HONG-MO CHAN ◽  
SHEUNG TSUN TSOU

Based on a non-Abelian generalization of electric–magnetic duality, the Dualized Standard Model (DSM) suggests a natural explanation for exactly three generations of fermions as the "dual colour" [Formula: see text] symmetry broken in a particular manner. The resulting scheme then offers on the one hand a fermion mass hierarchy and a perturbative method for calculating the mass and mixing parameters of the Standard Model fermions, and on the other hand testable predictions for new phenomena ranging from rare meson decays to ultra-high energy cosmic rays. Calculations to one-loop order gives, at the cost of adjusting only three real parameters, values for the following quantities all (except one) in very good agreement with experiment: the quark CKM matrix elements ‖Vrs‖, the lepton CKM matrix elements ‖Urs‖, and the second generation masses mc, ms, mμ. This means, in particular, that it gives near maximal mixing Uμ3 between νμ and ντ as observed by SuperKamiokande, Kamiokande and Soudan, while keeping small the corresponding quark angles Vcb, Vts. In addition, the scheme gives (i) rough order-of-magnitude estimates for the masses of the lowest generation, (ii) predictions for low energy FCNC effects such as KL→ eμ, and (iii) a possible explanation for the long-standing puzzle of air showers beyond the GZK cut-off. All these together, however, still represent but a portion of the possible physical consequences derivable from the DSM scheme, the majority of which are yet to be explored.


1981 ◽  
Vol 106 (6) ◽  
pp. 487-490 ◽  
Author(s):  
C.D. Froggatt ◽  
H.B. Nielsen
Keyword(s):  

2014 ◽  
Vol 29 (21) ◽  
pp. 1444003 ◽  
Author(s):  
Zhi-Zhong Xing

If massive neutrinos are the Majorana particles, how to pin down the Majorana CP-violating phases will eventually become an unavoidable question relevant to the future neutrino experiments. I argue that a study of neutrino–antineutrino oscillations will greatly help in this regard, although the issue remains purely academic at present. In this talk I first derive the probabilities and CP-violating asymmetries of neutrino–antineutrino oscillations in the three-flavor framework, and then illustrate their properties in two special cases: the normal neutrino mass hierarchy with m1 = 0 and the inverted neutrino mass hierarchy with m3 = 0. I demonstrate the significant contributions of the Majorana phases to the CP-violating asymmetries, even in the absence of the Dirac phase.


2012 ◽  
Author(s):  
Yoshio Koide ◽  
Toshifumi Yamashita
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document