Based on DICOM RT Structure and Multiple Loss Function Deep Learning Algorithm in Organ Segmentation of Head and Neck Image

Author(s):  
Ya-Ju Hsieh ◽  
Hsien-Chun Tseng ◽  
Chiun-Li Chin ◽  
Yu-Hsiang Shao ◽  
Ting-Yu Tsai
2021 ◽  
Vol 13 (9) ◽  
pp. 1779
Author(s):  
Xiaoyan Yin ◽  
Zhiqun Hu ◽  
Jiafeng Zheng ◽  
Boyong Li ◽  
Yuanyuan Zuo

Radar beam blockage is an important error source that affects the quality of weather radar data. An echo-filling network (EFnet) is proposed based on a deep learning algorithm to correct the echo intensity under the occlusion area in the Nanjing S-band new-generation weather radar (CINRAD/SA). The training dataset is constructed by the labels, which are the echo intensity at the 0.5° elevation in the unblocked area, and by the input features, which are the intensity in the cube including multiple elevations and gates corresponding to the location of bottom labels. Two loss functions are applied to compile the network: one is the common mean square error (MSE), and the other is a self-defined loss function that increases the weight of strong echoes. Considering that the radar beam broadens with distance and height, the 0.5° elevation scan is divided into six range bands every 25 km to train different models. The models are evaluated by three indicators: explained variance (EVar), mean absolute error (MAE), and correlation coefficient (CC). Two cases are demonstrated to compare the effect of the echo-filling model by different loss functions. The results suggest that EFnet can effectively correct the echo reflectivity and improve the data quality in the occlusion area, and there are better results for strong echoes when the self-defined loss function is used.


2020 ◽  
Vol 38 (12) ◽  
pp. 1304-1311 ◽  
Author(s):  
Benjamin H. Kann ◽  
Daniel F. Hicks ◽  
Sam Payabvash ◽  
Amit Mahajan ◽  
Justin Du ◽  
...  

PURPOSE Extranodal extension (ENE) is a well-established poor prognosticator and an indication for adjuvant treatment escalation in patients with head and neck squamous cell carcinoma (HNSCC). Identification of ENE on pretreatment imaging represents a diagnostic challenge that limits its clinical utility. We previously developed a deep learning algorithm that identifies ENE on pretreatment computed tomography (CT) imaging in patients with HNSCC. We sought to validate our algorithm performance for patients from a diverse set of institutions and compare its diagnostic ability to that of expert diagnosticians. METHODS We obtained preoperative, contrast-enhanced CT scans and corresponding pathology results from two external data sets of patients with HNSCC: an external institution and The Cancer Genome Atlas (TCGA) HNSCC imaging data. Lymph nodes were segmented and annotated as ENE-positive or ENE-negative on the basis of pathologic confirmation. Deep learning algorithm performance was evaluated and compared directly to two board-certified neuroradiologists. RESULTS A total of 200 lymph nodes were examined in the external validation data sets. For lymph nodes from the external institution, the algorithm achieved an area under the receiver operating characteristic curve (AUC) of 0.84 (83.1% accuracy), outperforming radiologists’ AUCs of 0.70 and 0.71 ( P = .02 and P = .01). Similarly, for lymph nodes from the TCGA, the algorithm achieved an AUC of 0.90 (88.6% accuracy), outperforming radiologist AUCs of 0.60 and 0.82 ( P < .0001 and P = .16). Radiologist diagnostic accuracy improved when receiving deep learning assistance. CONCLUSION Deep learning successfully identified ENE on pretreatment imaging across multiple institutions, exceeding the diagnostic ability of radiologists with specialized head and neck experience. Our findings suggest that deep learning has utility in the identification of ENE in patients with HNSCC and has the potential to be integrated into clinical decision making.


Sign in / Sign up

Export Citation Format

Share Document