Multi-Task Multi-Head Attention Memory Network for Fine-Grained Sentiment Analysis

Author(s):  
Zehui Dai ◽  
Wei Dai ◽  
Zhenhua Liu ◽  
Fengyun Rao ◽  
Huajie Chen ◽  
...  
Author(s):  
Xiangying Ran ◽  
Yuanyuan Pan ◽  
Wei Sun ◽  
Chongjun Wang

Aspect-based sentiment analysis (ABSA) is a fine-grained task. Recurrent Neural Network (RNN) model armed with attention mechanism seems a natural fit for this task, and actually it achieves the state-of-the-art performance recently. However, previous attention mechanisms proposed for ABSA may attend irrelevant words and thus downgrade the performance, especially when dealing with long and complex sentences with multiple aspects. In this paper, we propose a novel architecture named Hierarchical Gate Memory Network (HGMN) for ABSA: firstly, we employ the proposed hierarchical gate mechanism to learn to select the related part about the given aspect, which can keep the original sequence structure of sentence at the same time. After that, we apply Convolutional Neural Network (CNN) on the final aspect-specific memory. We conduct extensive experiments on the SemEval 2014 and Twitter dataset, and results demonstrate that our model outperforms attention based state-of-the-art baselines.


Author(s):  
Yufei Li ◽  
Xiaoyong Ma ◽  
Xiangyu Zhou ◽  
Pengzhen Cheng ◽  
Kai He ◽  
...  

Abstract Motivation Bio-entity Coreference Resolution focuses on identifying the coreferential links in biomedical texts, which is crucial to complete bio-events’ attributes and interconnect events into bio-networks. Previously, as one of the most powerful tools, deep neural network-based general domain systems are applied to the biomedical domain with domain-specific information integration. However, such methods may raise much noise due to its insufficiency of combining context and complex domain-specific information. Results In this paper, we explore how to leverage the external knowledge base in a fine-grained way to better resolve coreference by introducing a knowledge-enhanced Long Short Term Memory network (LSTM), which is more flexible to encode the knowledge information inside the LSTM. Moreover, we further propose a knowledge attention module to extract informative knowledge effectively based on contexts. The experimental results on the BioNLP and CRAFT datasets achieve state-of-the-art performance, with a gain of 7.5 F1 on BioNLP and 10.6 F1 on CRAFT. Additional experiments also demonstrate superior performance on the cross-sentence coreferences. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 34 (05) ◽  
pp. 8600-8607
Author(s):  
Haiyun Peng ◽  
Lu Xu ◽  
Lidong Bing ◽  
Fei Huang ◽  
Wei Lu ◽  
...  

Target-based sentiment analysis or aspect-based sentiment analysis (ABSA) refers to addressing various sentiment analysis tasks at a fine-grained level, which includes but is not limited to aspect extraction, aspect sentiment classification, and opinion extraction. There exist many solvers of the above individual subtasks or a combination of two subtasks, and they can work together to tell a complete story, i.e. the discussed aspect, the sentiment on it, and the cause of the sentiment. However, no previous ABSA research tried to provide a complete solution in one shot. In this paper, we introduce a new subtask under ABSA, named aspect sentiment triplet extraction (ASTE). Particularly, a solver of this task needs to extract triplets (What, How, Why) from the inputs, which show WHAT the targeted aspects are, HOW their sentiment polarities are and WHY they have such polarities (i.e. opinion reasons). For instance, one triplet from “Waiters are very friendly and the pasta is simply average” could be (‘Waiters’, positive, ‘friendly’). We propose a two-stage framework to address this task. The first stage predicts what, how and why in a unified model, and then the second stage pairs up the predicted what (how) and why from the first stage to output triplets. In the experiments, our framework has set a benchmark performance in this novel triplet extraction task. Meanwhile, it outperforms a few strong baselines adapted from state-of-the-art related methods.


2021 ◽  
Author(s):  
Sergio Consoli ◽  
Luca Barbaglia ◽  
Sebastiano Manzan

Author(s):  
Peilian Zhao ◽  
Cunli Mao ◽  
Zhengtao Yu

Aspect-Based Sentiment Analysis (ABSA), a fine-grained task of opinion mining, which aims to extract sentiment of specific target from text, is an important task in many real-world applications, especially in the legal field. Therefore, in this paper, we study the problem of limitation of labeled training data required and ignorance of in-domain knowledge representation for End-to-End Aspect-Based Sentiment Analysis (E2E-ABSA) in legal field. We proposed a new method under deep learning framework, named Semi-ETEKGs, which applied E2E framework using knowledge graph (KG) embedding in legal field after data augmentation (DA). Specifically, we pre-trained the BERT embedding and in-domain KG embedding for unlabeled data and labeled data with case elements after DA, and then we put two embeddings into the E2E framework to classify the polarity of target-entity. Finally, we built a case-related dataset based on a popular benchmark for ABSA to prove the efficiency of Semi-ETEKGs, and experiments on case-related dataset from microblog comments show that our proposed model outperforms the other compared methods significantly.


2021 ◽  
Vol 2083 (4) ◽  
pp. 042044
Author(s):  
Zuhua Dai ◽  
Yuanyuan Liu ◽  
Shilong Di ◽  
Qi Fan

Abstract Aspect level sentiment analysis belongs to fine-grained sentiment analysis, w hich has caused extensive research in academic circles in recent years. For this task, th e recurrent neural network (RNN) model is usually used for feature extraction, but the model cannot effectively obtain the structural information of the text. Recent studies h ave begun to use the graph convolutional network (GCN) to model the syntactic depen dency tree of the text to solve this problem. For short text data, the text information is not enough to accurately determine the emotional polarity of the aspect words, and the knowledge graph is not effectively used as external knowledge that can enrich the sem antic information. In order to solve the above problems, this paper proposes a graph co nvolutional neural network (GCN) model that can process syntactic information, know ledge graphs and text semantic information. The model works on the “syntax-knowled ge” graph to extract syntactic information and common sense information at the same t ime. Compared with the latest model, the model in this paper can effectively improve t he accuracy of aspect-level sentiment classification on two datasets.


2019 ◽  
Vol 488 ◽  
pp. 190-204 ◽  
Author(s):  
Feilong Tang ◽  
Luoyi Fu ◽  
Bin Yao ◽  
Wenchao Xu

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 179942-179953 ◽  
Author(s):  
Ming Jiang ◽  
Junlei Wu ◽  
Xiangrong Shi ◽  
Min Zhang

Sign in / Sign up

Export Citation Format

Share Document