Load Forecasting in District Heating Networks: Model Comparison on a Real-World Case Study

Author(s):  
Federico Bianchi ◽  
Alberto Castellini ◽  
Pietro Tarocco ◽  
Alessandro Farinelli
2014 ◽  
Vol 657 ◽  
pp. 689-693
Author(s):  
Răzvan Corneliu Lefter ◽  
Daniela Popescu ◽  
Alexandrina Untăroiu

Important investmentsare made lately in the area of district heating, as a technology capable ofhelping countries to reach sustainability goals. In Romania, European fundswere spent for transition from the 2nd to the 3rdgeneration of district heating systems. The lack of appropriate monitoringsystems in old district heating systems makes optimisation nowadays very difficult,especially because nominal values used in the first design stage areoverestimated. Realistic nominal heat loads are necessary to make goodestimations of hydraulic parameters to be used for redesign. This studyproposes a method that uses the heat load duration curve theory to identify theappropriate nominal heat loads to be used for redesign. Comparison betweenresults obtained by applying the nominal heat loads of each consumer, as theywere established in the first design stage, and the ones identified by theproposed method are analyzed in a case study. The results show that errors arein the +/- 3% band, between the metered heat consumption rates and the proposedrates. The new method can be used for the sizing of pumps and district heatingnetworks after retrofit, in order to get better adjustments of the circulationpumps and increase of the energy efficiency.


2020 ◽  
Vol 1599 ◽  
pp. 012038
Author(s):  
J Vivian ◽  
D Quaggiotto ◽  
E Ploner ◽  
F D’Isep ◽  
A Zarrella

Author(s):  
Anna Volkova ◽  
Vladislav Mashatin ◽  
Aleksander Hlebnikov ◽  
Andres Siirde

Abstract The purpose of this paper is to offer a methodology for the evaluation of large district heating networks. The methodology includes an analysis of heat generation and distribution based on the models created in the TERMIS and EnergyPro software Data from the large-scale Tallinn district heating system was used for the approbation of the proposed methodology as a basis of the case study. The effective operation of the district heating system, both at the stage of heat generation and heat distribution, can reduce the cost of heat supplied to the consumers. It can become an important factor for increasing the number of district heating consumers and demand for the heat load, which in turn will allow installing new cogeneration plants, using renewable energy sources and heat pump technologies


2016 ◽  
Vol 164 ◽  
pp. 492-500 ◽  
Author(s):  
Lisa Brange ◽  
Jessica Englund ◽  
Patrick Lauenburg

Energy ◽  
2018 ◽  
Vol 157 ◽  
pp. 141-149 ◽  
Author(s):  
Gowri Suryanarayana ◽  
Jesus Lago ◽  
Davy Geysen ◽  
Piotr Aleksiejuk ◽  
Christian Johansson

2017 ◽  
Vol 122 ◽  
pp. 865-870 ◽  
Author(s):  
Martin Joly ◽  
Gabriel Ruiz ◽  
Franz Mauthner ◽  
Paul Bourdoukan ◽  
Morgane Emery ◽  
...  

2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Alberto Pizzolato ◽  
Adriano Sciacovelli ◽  
Vittorio Verda

Large district heating networks greatly benefit from topological changes brought by the construction of loops. The overall effects of malfunctions are smoothed, making existing networks intrinsically robust. In this paper, we demonstrate the use of topology optimization to find the network layout that maximizes robustness under an investment constraint. The optimized design stems from a large ground structure that includes all the possible looping elements. The objective is an original robustness measure, that neither requires any probabilistic analysis of the input uncertainty nor the identification of bounds on stochastic variables. Our case study on the Turin district heating network confirms that robustness and cost are antagonist objectives: the optimized designs obtained by systematically relaxing the investment constraint lay on a smooth Pareto front. A sudden steepness variation divides the front in two different regions. For small investments topological modifications are observed, i.e., new branches appear continuously in the optimized layout as the investment increases. Here, large robustness improvements are possible. However, at high investments no topological modifications are visible and only limited robustness gains are obtained.


Energy ◽  
2019 ◽  
Vol 180 ◽  
pp. 918-933 ◽  
Author(s):  
Eftim Popovski ◽  
Ali Aydemir ◽  
Tobias Fleiter ◽  
Daniel Bellstädt ◽  
Richard Büchele ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document