Improving Deep Unconstrained Facial Recognition by Data Augmentation

Author(s):  
Arnauld Fountsop Nzegha ◽  
Jean Louis Ebongue Fendji ◽  
Christopher Thron ◽  
Clementin Djameni Tayou
Author(s):  
Chengwen Luo ◽  
Zhongru Yang ◽  
Xingyu Feng ◽  
Jin Zhang ◽  
Hong Jia ◽  
...  

Face recognition (FR) has been widely used in many areas nowadays. However, the existing mainstream vision-based facial recognition has limitations such as vulnerability to spoofing attacks, sensitivity to lighting conditions, and high risk of privacy leakage, etc. To address these problems, in this paper we take a sparkly different approach and propose RFaceID, a novel RFID-based face recognition system. RFaceID only needs the users to shake their faces in front of the RFID tag matrix for a few seconds to get their faces recognized. Through theoretical analysis and experiment validations, the feasibility of the RFID-based face recognition is studied. Multiple data processing and data augmentation techniques are proposed to minimize the negative impact of environmental noises and user dynamics. A deep neural network (DNN) model is designed to characterize both the spatial and temporal feature of face shaking events. We implement the system and extensive evaluation results show that RFaceID achieves a high face recognition accuracy at 93.1% for 100 users, which shows the potential of RFaceID for future facial recognition applications.


2020 ◽  
Vol 43 ◽  
Author(s):  
Myrthe Faber

Abstract Gilead et al. state that abstraction supports mental travel, and that mental travel critically relies on abstraction. I propose an important addition to this theoretical framework, namely that mental travel might also support abstraction. Specifically, I argue that spontaneous mental travel (mind wandering), much like data augmentation in machine learning, provides variability in mental content and context necessary for abstraction.


Author(s):  
Chrisanthi Nega

Abstract. Four experiments were conducted investigating the effect of size congruency on facial recognition memory, measured by remember, know and guess responses. Different study times were employed, that is extremely short (300 and 700 ms), short (1,000 ms), and long times (5,000 ms). With the short study time (1,000 ms) size congruency occurred in knowing. With the long study time the effect of size congruency occurred in remembering. These results support the distinctiveness/fluency account of remembering and knowing as well as the memory systems account, since the size congruency effect that occurred in knowing under conditions that facilitated perceptual fluency also occurred independently in remembering under conditions that facilitated elaborative encoding. They do not support the idea that remember and know responses reflect differences in trace strength.


Author(s):  
Alex Hernández-García ◽  
Johannes Mehrer ◽  
Nikolaus Kriegeskorte ◽  
Peter König ◽  
Tim C. Kietzmann

2002 ◽  
Vol 7 (1) ◽  
pp. 31-42
Author(s):  
J. Šaltytė ◽  
K. Dučinskas

The Bayesian classification rule used for the classification of the observations of the (second-order) stationary Gaussian random fields with different means and common factorised covariance matrices is investigated. The influence of the observed data augmentation to the Bayesian risk is examined for three different nonlinear widely applicable spatial correlation models. The explicit expression of the Bayesian risk for the classification of augmented data is derived. Numerical comparison of these models by the variability of Bayesian risk in case of the first-order neighbourhood scheme is performed.


2020 ◽  
Vol 64 (4) ◽  
pp. 40412-1-40412-11
Author(s):  
Kexin Bai ◽  
Qiang Li ◽  
Ching-Hsin Wang

Abstract To address the issues of the relatively small size of brain tumor image datasets, severe class imbalance, and low precision in existing segmentation algorithms for brain tumor images, this study proposes a two-stage segmentation algorithm integrating convolutional neural networks (CNNs) and conventional methods. Four modalities of the original magnetic resonance images were first preprocessed separately. Next, preliminary segmentation was performed using an improved U-Net CNN containing deep monitoring, residual structures, dense connection structures, and dense skip connections. The authors adopted a multiclass Dice loss function to deal with class imbalance and successfully prevented overfitting using data augmentation. The preliminary segmentation results subsequently served as the a priori knowledge for a continuous maximum flow algorithm for fine segmentation of target edges. Experiments revealed that the mean Dice similarity coefficients of the proposed algorithm in whole tumor, tumor core, and enhancing tumor segmentation were 0.9072, 0.8578, and 0.7837, respectively. The proposed algorithm presents higher accuracy and better stability in comparison with some of the more advanced segmentation algorithms for brain tumor images.


Sign in / Sign up

Export Citation Format

Share Document