scholarly journals Parallel High-Performance Computing Algorithm to Generate FEM-Compliant Volumetric Mesh Representations of Biomolecules at Atomic Scale

Author(s):  
Jorge López ◽  
Salvador Botello ◽  
Rafael Herrera ◽  
Mauricio Carrillo-Tripp
2019 ◽  
Author(s):  
Jorge López ◽  
Salvador Botello ◽  
Rafael Herrera ◽  
Mauricio Carrillo-Tripp

AbstractThe computational study of biomolecules has been undermined by the lack of models that accurately represent the structure of big complexes at the atomic level. In this work, we report the development of an algorithm to generate a volumetric mesh of a biomolecule, of any size and shape, based on its atomic structure. Our mesh generation tool leverages the octree algorithm properties with parallel high-performance computing techniques to produce a discretized hexahedral model faster than previous methods. The reported algorithm is memory efficient and generates volumetric meshes suitable to be used directly in Finite Element Analysis. We tested the algorithm by producing mesh models of different biomolecule types and complex size, and also performed numerical simulations for the largest case. The Finite Element results show that our mesh models reproduce experimental data.


MRS Bulletin ◽  
1997 ◽  
Vol 22 (10) ◽  
pp. 5-6
Author(s):  
Horst D. Simon

Recent events in the high-performance computing industry have concerned scientists and the general public regarding a crisis or a lack of leadership in the field. That concern is understandable considering the industry's history from 1993 to 1996. Cray Research, the historic leader in supercomputing technology, was unable to survive financially as an independent company and was acquired by Silicon Graphics. Two ambitious new companies that introduced new technologies in the late 1980s and early 1990s—Thinking Machines and Kendall Square Research—were commercial failures and went out of business. And Intel, which introduced its Paragon supercomputer in 1994, discontinued production only two years later.During the same time frame, scientists who had finished the laborious task of writing scientific codes to run on vector parallel supercomputers learned that those codes would have to be rewritten if they were to run on the next-generation, highly parallel architecture. Scientists who are not yet involved in high-performance computing are understandably hesitant about committing their time and energy to such an apparently unstable enterprise.However, beneath the commercial chaos of the last several years, a technological revolution has been occurring. The good news is that the revolution is over, leading to five to ten years of predictable stability, steady improvements in system performance, and increased productivity for scientific applications. It is time for scientists who were sitting on the fence to jump in and reap the benefits of the new technology.


Sign in / Sign up

Export Citation Format

Share Document