Green Function for the Laplacian Operator

2020 ◽  
pp. 667-687
Author(s):  
V. Balakrishnan
2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Li Zhang ◽  
Fanglei Wang ◽  
Yuanfang Ru

Combining the properties of the Green function with some point theorems, we consider the existence of nontrivial solutions for fractional equations with p-Laplacian operator D0+βϕp[D0+α(ptu′(t))]+f(t,u(t))=0,  0<t<1, au(0)-bp0u′(0)=0, and cu(1)+dp1u′(1)=0, D0+αptu′tt=0=0, where a,b,c,d are constants and p(·):[0,1]→(0,+∞) is continuous.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Jufang Wang ◽  
Changlong Yu ◽  
Boya Zhang ◽  
Si Wang

AbstractThe aim of this paper is to investigate the boundary value problem of a fractional q-difference equation with ϕ-Laplacian, where ϕ-Laplacian is a generalized p-Laplacian operator. We obtain the existence and nonexistence of positive solutions in terms of different eigenvalue intervals for this problem by means of the Green function and Guo–Krasnoselskii fixed point theorem on cones. Finally, we give some examples to illustrate the use of our results.


2006 ◽  
Vol 11 (4) ◽  
pp. 323-329 ◽  
Author(s):  
G. A. Afrouzi ◽  
S. H. Rasouli

This study concerns the existence of positive solutions to classes of boundary value problems of the form−∆u = g(x,u), x ∈ Ω,u(x) = 0, x ∈ ∂Ω,where ∆ denote the Laplacian operator, Ω is a smooth bounded domain in RN (N ≥ 2) with ∂Ω of class C2, and connected, and g(x, 0) < 0 for some x ∈ Ω (semipositone problems). By using the method of sub-super solutions we prove the existence of positive solution to special types of g(x,u).


2006 ◽  
Vol 6 (4) ◽  
pp. 386-404 ◽  
Author(s):  
Ivan. P. Gavrilyuk ◽  
V.L. Makarov ◽  
V.B. Vasylyk

AbstractWe develop an accurate approximation of the normalized hyperbolic operator sine family generated by a strongly positive operator A in a Banach space X which represents the solution operator for the elliptic boundary value problem. The solution of the corresponding inhomogeneous boundary value problem is found through the solution operator and the Green function. Starting with the Dunford — Cauchy representation for the normalized hyperbolic operator sine family and for the Green function, we then discretize the integrals involved by the exponentially convergent Sinc quadratures involving a short sum of resolvents of A. Our algorithm inherits a two-level parallelism with respect to both the computation of resolvents and the treatment of different values of the spatial variable x ∈ [0, 1].


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Hongjie Liu ◽  
Xiao Fu ◽  
Liangping Qi

We are concerned with the following nonlinear three-point fractional boundary value problem:D0+αut+λatft,ut=0,0<t<1,u0=0, andu1=βuη, where1<α≤2,0<β<1,0<η<1,D0+αis the standard Riemann-Liouville fractional derivative,at>0is continuous for0≤t≤1, andf≥0is continuous on0,1×0,∞. By using Krasnoesel'skii's fixed-point theorem and the corresponding Green function, we obtain some results for the existence of positive solutions. At the end of this paper, we give an example to illustrate our main results.


2021 ◽  
pp. 1-16
Author(s):  
Alexander Dabrowski

A variational characterization for the shift of eigenvalues caused by a general type of perturbation is derived for second order self-adjoint elliptic differential operators. This result allows the direct extension of asymptotic formulae from simple eigenvalues to repeated ones. Some examples of particular interest are presented theoretically and numerically for the Laplacian operator for the following domain perturbations: excision of a small hole, local change of conductivity, small boundary deformation.


2020 ◽  
Vol 10 (1) ◽  
pp. 522-533
Author(s):  
Amanda S. S. Correa Leão ◽  
Joelma Morbach ◽  
Andrelino V. Santos ◽  
João R. Santos Júnior

Abstract Some classes of generalized Schrödinger stationary problems are studied. Under appropriated conditions is proved the existence of at least 1 + $\begin{array}{} \sum_{i=2}^{m} \end{array}$ dim Vλi pairs of nontrivial solutions if a parameter involved in the equation is large enough, where Vλi denotes the eigenspace associated to the i-th eigenvalue λi of laplacian operator with homogeneous Dirichlet boundary condition.


Sign in / Sign up

Export Citation Format

Share Document