scholarly journals Limits of Distributed Dislocations in Geometric and Constitutive Paradigms

Author(s):  
Marcelo Epstein ◽  
Raz Kupferman ◽  
Cy Maor
Author(s):  
Evgeniya V. Goloveshkina

The phenomenon of stability loss of a hollow elastic sphere containing distributed dislocations and loaded with external hydrostatic pressure is studied. The study was carried out in the framework of the nonlinear elasticity theory and the continuum theory of continuously distributed dislocations. An exact statement and solution of the stability problem for a three-dimensional elastic body with distributed dislocations are given. The static problem of nonlinear elasticity theory for a body with distributed dislocations is reduced to a system of equations consisting of equilibrium equations, incompatibility equations with a given dislocation density tensor, and constitutive equations of the material. The unperturbed state is caused by external pressure and a spherically symmet-ric distribution of dislocations. For distributed edge dislocations in the framework of a harmonic (semi-linear) mate-rial model, the unperturbed state is defined as an exact spherically symmetric solution to a nonlinear boundary value problem. This solution is valid for any function that characterizes the density of edge dislocations. The perturbed equilibrium state is described by a boundary value problem linearized in the neighborhood of the equilibrium. The analysis of the axisymmetric buckling of the sphere was performed using the bifurcation method. It consists in determining the equilibrium positions of an elastic body, which differ little from the unperturbed state. By solving the linearized problem, the value of the external pressure at which the sphere first loses stability is found. The effect of dislocations on the buckling of thin and thick spherical shells is analyzed.


1981 ◽  
Vol 48 (1) ◽  
pp. 97-103 ◽  
Author(s):  
K. Tanaka ◽  
T. Mura

The slip band formed in a grain on the material surface is a preferential site for crack initiation during low strain fatigue of polycrystalline metals. The forward and reverse plastic flow within the slip band is modeled in the present study by dislocations with different signs moving on two closely located layers, and it is assumed that their movement is irreversible. Based on the model, the monotonic buildup of dislocation dipoles piled up at the grain boundary is systematically derived using the theory of continuously distributed dislocations. This buildup is associated with the progress of extrusion or intrusion. The number of stress cycles up to the initiation of a crack of the grain size order is defined as the cycle when the stored strain energy of accumulated dislocations reaches a critical value. The relation between the initiation life and the plastic strain range derived theoretically is in agreement with a Coffin-Manson type law, and that between the fatigue strength and the grain size is expressed in an equation of the Petch type.


2006 ◽  
Vol 324-325 ◽  
pp. 787-792
Author(s):  
Boris Aberšek ◽  
Jože Flašker ◽  
Srečko Glodež

For accurate determination of the service life we must take into account the loading, which are in most cases random loading of variable amplitude, the geometry and material properties of construction elements which are known not to be constants. The more precise these input parameters are modeled; the more precise and reliable are the results. In our paper we will deal in detail with the model of crack initiation and propagation in the complex structures as a basis of the algorithm for calculating the service life. For determination of the service life for the area of short cracks we used Bilby, Cottrell and Swinden model which is based on the theory of continuously distributed dislocations and we complemented it with random generation of structure of material before cracks. For the long crack we have developed a stochastic model for determination of service life.


2012 ◽  
Vol 504-506 ◽  
pp. 125-130
Author(s):  
Sanda Cleja-Tigoiu

The paper deals with a mathematical model able to describe the presence of lattice defects of the crystalline materials, such as dislocation and disclination. Within the constitutive framework of second order plasticity developed by the author, the evolution equations to describe the disclinations that are compatible with the screw dislocations are derived.


Sign in / Sign up

Export Citation Format

Share Document