Do We Really Need Pantographic Structures?

2021 ◽  
pp. 253-268
Author(s):  
Mario Spagnuolo ◽  
Emilio Barchiesi
2021 ◽  
Vol 43 ◽  
pp. 101202
Author(s):  
Zacharias Vangelatos ◽  
M. Erden Yildizdag ◽  
Ivan Giorgio ◽  
Francesco dell’Isola ◽  
Costas Grigoropoulos

2016 ◽  
Vol 7 ◽  
pp. 1 ◽  
Author(s):  
Gregor Ganzosch ◽  
Francesco Dell’Isola ◽  
Emilio Turco ◽  
Tomasz Lekszycki ◽  
Wolfgang H. Müller

With the advancements in 3D printing technology, rapid manufacturing of fabric materials with complex geometries became possible. By exploiting this technique, different materials with different structures have been developed in the recent past with the objective of making generalized continuum theories useful for technological applications. So-called pantographic structures are introduced: Inextensible fibers are printed in two arrays orthogonal to each other in parallel planes. These superimposed planes are inter-connected by elastic cylinders. Five differently-sized samples were subjected to shear-like loading while their deformation response was analyzed. Results show that deformation behavior is strong non-linear for all samples. Furthermore, all samples were capable to resist considerable external shear loads without leading to complete failure of the whole structure. This extraordinary behavior makes these structures attractive to serve as an extremely tough metamaterial.


Author(s):  
F. dell’Isola ◽  
I. Giorgio ◽  
M. Pawlikowski ◽  
N. L. Rizzi

The aim of this paper is to find a computationally efficient and predictive model for the class of systems that we call ‘pantographic structures’. The interest in these materials was increased by the possibilities opened by the diffusion of technology of three-dimensional printing. They can be regarded, once choosing a suitable length scale, as families of beams (also called fibres) interconnected to each other by pivots and undergoing large displacements and large deformations. There are, however, relatively few ‘ready-to-use’ results in the literature of nonlinear beam theory. In this paper, we consider a discrete spring model for extensible beams and propose a heuristic homogenization technique of the kind first used by Piola to formulate a continuum fully nonlinear beam model. The homogenized energy which we obtain has some peculiar and interesting features which we start to describe by solving numerically some exemplary deformation problems. Furthermore, we consider pantographic structures, find the corresponding homogenized second gradient deformation energies and study some planar problems. Numerical solutions for these two-dimensional problems are obtained via minimization of energy and are compared with some experimental measurements, in which elongation phenomena cannot be neglected.


2021 ◽  
pp. 108128652110333
Author(s):  
Maximilian Stilz ◽  
David Plappert ◽  
Florian Gutmann ◽  
Stefan Hiermaier

In this work we present a three-dimensional extension of pantographic structures and describe its properties after homogenization of the unit cell. Here we rely on a description involving only the first gradient of displacement, as the semi-auxetic property is effectively described by first-order stiffness terms. For a homogenization technique, discrete asymptotic expansion is used. The material shows two positive ([Formula: see text]) and one negative Poisson’s ratios ([Formula: see text]). If, on the other hand, we assume inextensible Bernoulli beams and perfect pivots, we find a vanishing stiffness matrix, suggesting a purely higher gradient material.


2019 ◽  
Vol 101 ◽  
pp. 103415 ◽  
Author(s):  
Mario Spagnuolo ◽  
Patrice Peyre ◽  
Corinne Dupuy

2020 ◽  
Vol 25 (12) ◽  
pp. 2252-2262
Author(s):  
Boris Desmorat ◽  
Mario Spagnuolo ◽  
Emilio Turco

Mechanical metamaterials are microstructured mechanical systems showing an overall macroscopic behaviour that depends mainly on their microgeometry and microconstitutive properties. Moreover, their exotic properties are very often extremely sensitive to small variations of mechanical and geometrical properties in their microstructure. Clearly, the methods of structural optimization, once combined with the techniques used to describe multiscale systems, are expected to determine a dramatic improvement in the quality of newly designed metamaterials. In this paper, we consider, only as a demonstrative example, planar pantographic structures which have proved to be extremely tough in extension, To describe pantographic structure behaviour in an efficient way, it has been proposed to use Piola–Hencky-type Lagrangian models, in which the understanding of the mechanics of involved microdeformation processes allows for the formulation of efficient numerical codes. In this paper, we prove that it is possible, via a suitable choice of the macroscopic shear stiffness, to increase the maximal elongation of pantographic structures, in the standard bias test, before the occurrence of rupture phenomena. The basic tool employed to this aim is a constrained optimization algorithm, which uses the numerical tool, previously developed for determining equilibrium shapes, as a subroutine. Actually, one looks for the shear stiffness distribution, which, given the imposed elongation of the pantographic structure and the force applied to it by the used hard device, minimizes the total elongation energy. The so-optimized shear stiffness distribution does prove able to extend the range of imposed elongations that the specimen can experience while remaining undamaged.


Sign in / Sign up

Export Citation Format

Share Document