A 3D extension of pantographic geometries to obtain metamaterial with semi-auxetic properties

2021 ◽  
pp. 108128652110333
Author(s):  
Maximilian Stilz ◽  
David Plappert ◽  
Florian Gutmann ◽  
Stefan Hiermaier

In this work we present a three-dimensional extension of pantographic structures and describe its properties after homogenization of the unit cell. Here we rely on a description involving only the first gradient of displacement, as the semi-auxetic property is effectively described by first-order stiffness terms. For a homogenization technique, discrete asymptotic expansion is used. The material shows two positive ([Formula: see text]) and one negative Poisson’s ratios ([Formula: see text]). If, on the other hand, we assume inextensible Bernoulli beams and perfect pivots, we find a vanishing stiffness matrix, suggesting a purely higher gradient material.

Author(s):  
Dongdong Wang ◽  
Pinkang Xie ◽  
Lingming Fang

A consistent asymptotic expansion multiscale formulation is presented for analysis of the heterogeneous column structure, which has three dimensional periodic reinforcements along the axial direction. The proposed formulation is based upon a new asymptotic expansion of the displacement field. This new multiscale displacement expansion has a three dimensional form, more specifically, it takes into account the axial periodic property but simultaneously keeps the cross section dimensions in the global scale. Thus, this formulation inherently reflects the characteristics of the column structure, i.e., the traction free condition on the circumferential surfaces. Subsequently, the global equilibrium problem and the local unit cell problem are consistently derived based upon the proposed asymptotic displacement field. It turns out that the global homogenized problem is the standard axial equilibrium equation, while the local unit cell problem is completely three dimensional which is subjected to the periodic boundary condition on axial surfaces as well as the traction free condition on circumferential surfaces of the unit cell. Thereafter, the variational formulation and finite element discretization of the unit cell problem are discussed. The effectiveness of the present formulation is illustrated by several numerical examples.


2011 ◽  
Vol 415-417 ◽  
pp. 210-213
Author(s):  
Lan Ying Liu ◽  
Ya Nan Jiao

In this paper, a new multi-direction three-dimensional fabric, called in-plane quasi-isotropic fabric, including warps 0, wefts 90o, a set of bias yarns ±45o, and a vertical yarns Z fastening the other yarns together is designed. Unit cell models are established on the basis of the rule of yarn movement and on the basis of optimizing the yarn cross section on the method of braiding-solidify-cutting-polishing-viewing. Mathematical relationship of the parameters with geometry parameters is founded and the fiber volume content is calculated, the valid relationship is proved by experimental results.


2014 ◽  
Vol 70 (6) ◽  
pp. i23-i24 ◽  
Author(s):  
Hisanori Yamane ◽  
Toshiki Nagura ◽  
Tomohiro Miyazaki

Colorless transparent single crystals of trilanthanum hexasilicon undecanitrogen, La3Si6N11, were prepared at 0.85 MPa of N2and 2273 K. The title compound is isotypic with Sm3Si6N11. Silicon-centered nitrogen tetrahedra form a three-dimensional network structure by sharing their corners. Layers of one type of SiN4tetrahedra and slabs composed of the two different La3+cations and the other type of SiN4tetrahedra are alternately stacked along thecaxis of the tetragonal unit cell. The site symmetries of the two La3+cations are are ..mand 4.., respectively.


Author(s):  
J.L. Carrascosa ◽  
G. Abella ◽  
S. Marco ◽  
M. Muyal ◽  
J.M. Carazo

Chaperonins are a class of proteins characterized by their role as morphogenetic factors. They trantsiently interact with the structural components of certain biological aggregates (viruses, enzymes etc), promoting their correct folding, assembly and, eventually transport. The groEL factor from E. coli is a conspicuous member of the chaperonins, as it promotes the assembly and morphogenesis of bacterial oligomers and/viral structures.We have studied groEL-like factors from two different bacteria:E. coli and B.subtilis. These factors share common morphological features , showing two different views: one is 6-fold, while the other shows 7 morphological units. There is also a correlation between the presence of a dominant 6-fold view and the fact of both bacteria been grown at low temperature (32°C), while the 7-fold is the main view at higher temperatures (42°C). As the two-dimensional projections of groEL were difficult to interprete, we studied their three-dimensional reconstruction by the random conical tilt series method from negatively stained particles.


2019 ◽  
Vol 63 (5) ◽  
pp. 50401-1-50401-7 ◽  
Author(s):  
Jing Chen ◽  
Jie Liao ◽  
Huanqiang Zeng ◽  
Canhui Cai ◽  
Kai-Kuang Ma

Abstract For a robust three-dimensional video transmission through error prone channels, an efficient multiple description coding for multi-view video based on the correlation of spatial polyphase transformed subsequences (CSPT_MDC_MVC) is proposed in this article. The input multi-view video sequence is first separated into four subsequences by spatial polyphase transform and then grouped into two descriptions. With the correlation of macroblocks in corresponding subsequence positions, these subsequences should not be coded in completely the same way. In each description, one subsequence is directly coded by the Joint Multi-view Video Coding (JMVC) encoder and the other subsequence is classified into four sets. According to the classification, the indirectly coding subsequence selectively employed the prediction mode and the prediction vector of the counter directly coding subsequence, which reduces the bitrate consumption and the coding complexity of multiple description coding for multi-view video. On the decoder side, the gradient-based directional interpolation is employed to improve the side reconstructed quality. The effectiveness and robustness of the proposed algorithm is verified by experiments in the JMVC coding platform.


Geosciences ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 329
Author(s):  
Mahdi O. Karkush ◽  
Mahmood D. Ahmed ◽  
Ammar Abdul-Hassan Sheikha ◽  
Ayad Al-Rumaithi

The current study involves placing 135 boreholes drilled to a depth of 10 m below the existing ground level. Three standard penetration tests (SPT) are performed at depths of 1.5, 6, and 9.5 m for each borehole. To produce thematic maps with coordinates and depths for the bearing capacity variation of the soil, a numerical analysis was conducted using MATLAB software. Despite several-order interpolation polynomials being used to estimate the bearing capacity of soil, the first-order polynomial was the best among the other trials due to its simplicity and fast calculations. Additionally, the root mean squared error (RMSE) was almost the same for the all of the tried models. The results of the study can be summarized by the production of thematic maps showing the variation of the bearing capacity of the soil over the whole area of Al-Basrah city correlated with several depths. The bearing capacity of soil obtained from the suggested first-order polynomial matches well with those calculated from the results of SPTs with a deviation of ±30% at a 95% confidence interval.


Author(s):  
Olivier Ozenda ◽  
Epifanio G. Virga

AbstractThe Kirchhoff-Love hypothesis expresses a kinematic constraint that is assumed to be valid for the deformations of a three-dimensional body when one of its dimensions is much smaller than the other two, as is the case for plates. This hypothesis has a long history checkered with the vicissitudes of life: even its paternity has been questioned, and recent rigorous dimension-reduction tools (based on standard $\varGamma $ Γ -convergence) have proven to be incompatible with it. We find that an appropriately revised version of the Kirchhoff-Love hypothesis is a valuable means to derive a two-dimensional variational model for elastic plates from a three-dimensional nonlinear free-energy functional. The bending energies thus obtained for a number of materials also show to contain measures of stretching of the plate’s mid surface (alongside the expected measures of bending). The incompatibility with standard $\varGamma $ Γ -convergence also appears to be removed in the cases where contact with that method and ours can be made.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Aleix Gimenez-Grau ◽  
Pedro Liendo ◽  
Philine van Vliet

Abstract Boundaries in three-dimensional $$ \mathcal{N} $$ N = 2 superconformal theories may preserve one half of the original bulk supersymmetry. There are two possibilities which are characterized by the chirality of the leftover supercharges. Depending on the choice, the remaining 2d boundary algebra exhibits $$ \mathcal{N} $$ N = (0, 2) or $$ \mathcal{N} $$ N = (1) supersymmetry. In this work we focus on correlation functions of chiral fields for both types of supersymmetric boundaries. We study a host of correlators using superspace techniques and calculate superconformal blocks for two- and three-point functions. For $$ \mathcal{N} $$ N = (1) supersymmetry, some of our results can be analytically continued in the spacetime dimension while keeping the codimension fixed. This opens the door for a bootstrap analysis of the ϵ-expansion in supersymmetric BCFTs. Armed with our analytically-continued superblocks, we prove that in the free theory limit two-point functions of chiral (and antichiral) fields are unique. The first order correction, which already describes interactions, is universal up to two free parameters. As a check of our analysis, we study the Wess-Zumino model with a super-symmetric boundary using Feynman diagrams, and find perfect agreement between the perturbative and bootstrap results.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 436 ◽  
Author(s):  
Hilary Mary Clayton ◽  
Sarah Jane Hobbs

The piaffe is an artificial, diagonally coordinated movement performed in the highest levels of dressage competition. The ground reaction forces (GRFs) of horses performing the piaffe do not appear to have been reported. Therefore, the objective of this study was to describe three-dimensional GRFs in ridden dressage horses performing the piaffe. In-ground force plates were used to capture fore and hindlimb GRF data from seven well-trained dressage horses. Peak vertical GRF was significantly higher in forelimbs than in the hindlimbs (7.39 ± 0.99 N/kg vs. 6.41 ± 0.64 N/kg; p < 0.001) with vertical impulse showing a trend toward higher forelimb values. Peak longitudinal forces were small with no difference in the magnitude of braking or propulsive forces between fore and hindlimbs. Peak transverse forces were similar in magnitude to longitudinal forces and were mostly directed medially in the hindlimbs. Both the intra- and inter-individual variability of longitudinal and transverse GRFs were high (coefficient of variation 25–68%). Compared with the other diagonal gaits of dressage horses, the vertical GRF somewhat shifted toward the hindlimbs. The high step-to-step variability of the horizontal GRF components is thought to reflect the challenge of balancing on one diagonal pair of limbs with no forward momentum.


2021 ◽  
Vol 7 (1) ◽  
pp. 519-539
Author(s):  
Thiago Minete Cardozo ◽  
Costas Papadopoulos

Abstract Museums have been increasingly investing in their digital presence. This became more pressing during the COVID-19 pandemic since heritage institutions had, on the one hand, to temporarily close their doors to visitors while, on the other, find ways to communicate their collections to the public. Virtual tours, revamped websites, and 3D models of cultural artefacts were only a few of the means that museums devised to create alternative ways of digital engagement and counteract the physical and social distancing measures. Although 3D models and collections provide novel ways to interact, visualise, and comprehend the materiality and sensoriality of physical objects, their mediation in digital forms misses essential elements that contribute to (virtual) visitor/user experience. This article explores three-dimensional digitisations of museum artefacts, particularly problematising their aura and authenticity in comparison to their physical counterparts. Building on several studies that have problematised these two concepts, this article establishes an exploratory framework aimed at evaluating the experience of aura and authenticity in 3D digitisations. This exploration allowed us to conclude that even though some aspects of aura and authenticity are intrinsically related to the physicality and materiality of the original, 3D models can still manifest aura and authenticity, as long as a series of parameters, including multimodal contextualisation, interactivity, and affective experiences are facilitated.


Sign in / Sign up

Export Citation Format

Share Document