On Shallow Mixing Interfaces and Their Relevance for Understanding Mixing at River Confluences

Author(s):  
G. Constantinescu
Keyword(s):  
Author(s):  
Catalina Rossi ◽  
Jorge Oyarzún ◽  
Pablo Pastén ◽  
Robert L. Runkel ◽  
Jorge Núñez ◽  
...  

2020 ◽  
Vol 8 (8) ◽  
pp. 591 ◽  
Author(s):  
Ahmed Bilal ◽  
Qiancheng Xie ◽  
Yanyan Zhai

River confluences are the key features of the drainage basins, as their hydrological, geomorphological, and ecological nature strongly influences the downstream river characteristics. The river reaches near the coastal zones, which also makes them under the influence of tidal currents in addition to their runoff. This causes a bi-directional flow and makes the study of confluences more interesting and complex in these areas. There is a reciprocal adjustment of flow, sediment, and morphology at a confluence, and its behaviors, differ greatly in tidal and non-tidal environments. Existing studies of the river junctions provide a good account of information about the hydrodynamics and bed morphology of the confluent areas, especially the unidirectional ones. The main factors which affect the flow field include the angle of confluence, flow-related ratios (velocity, discharge, and momentum) of the merging streams, and bed discordance. Hydraulically, six notable zones are identified for unidirectional confluences. However, for bi-directional (tidal) junctions, hydrodynamic zones always remain in transition but repeat in a cycle and make four different arrangements of flow features. This study discusses the hydrodynamics, sediment transport, morphological changes, and the factors affecting these processes and reviews the recent research about the confluences for these issues. All of these studies provide insights into the morpho-dynamics in tidal and non-tidal confluent areas.


2020 ◽  
Vol 70 (3) ◽  
pp. 127-139
Author(s):  
Md. Yousuf Gazi ◽  
Himel Roy ◽  
Md. Bodruddoza Mia ◽  
Syed Humayun Akhter

Abstract Bangladesh is a low-lying riverine country with the mighty Ganges–Brahmaputra–Meghna (GBM) major river system including their abundant tributaries and distributaries. Land erosion–accretion is a very common phenomenon in this riverine country. This process extensively erodes huge productive landmasses at the river confluence zones every year. The main objective of this study was to understand the confluence morpho-dynamics and identify the vulnerable areas near the Padma–Meghna Confluence (PMC) and Ganges–Jamuna confluence (GJC) due to confluence shifting and erosion–accretion phenomenon of those rivers. The present study utilized multi-temporal Landsat satellite images from 1972 to 2019 approximately ten years of interval. Results showed that the PMC indicated frequent variation in migration trend towards NW from 1972 to 1980, SE from 1980 to 2010, and then reversed towards NW direction from 2010 to 2019. On the other hand, the GJC confluence point moved NW direction (2.37 km) from the year 1972 to 1980, but from 1980 to 2019, the confluence shifted towards the SE direction. Due to the migration dynamics, huge changes happened in width and sand bars area of both confluences. In PMC, confluence width increased remarkably indicating erosive flow during 1972–1980, then progressively shortened up to 2019, indicating accretion. In contrast, GJC shows a significant accretional trend over the 47 years. The sand bar area of the PMC increased about 147.09 km2 throughout the study period. But, GJC shows an opposite scenario where the total sand bar area decreased about 51.02 km2 in the same period. From the vulnerability study of erosion–accretion scenarios, it is predicted that Paturia Ferry Ghat area, Aricha Ferry Ghat area, Arua, Baruria, Dashkin Saljana, Bhadiakola, Masundia, Khanganj and Nyakandi areas near GJC and Chandpur sadar, Srimandi, Sakhua, Bilaspur and char Atra near PMC are highly vulnerable zones. The outputs of the study will enable policy makers to take necessary measures to reduce the erosional severity on both confluence zones and could also provide a basis for proper land management.


Soil Research ◽  
1998 ◽  
Vol 36 (1) ◽  
pp. 167 ◽  
Author(s):  
R. H. Crockford ◽  
P. M. Fleming

A comprehensive sediment sampling program was undertaken in the upper Molonglo catchment in south-eastern New South Wales to determine if mineral magnetics could be used to estimate sidestream contribution at river confluences in this environment. Some 12 confluences were examined over 1400 km 2 in 2 major basins and over 2 contrasting geological types. Sediment samples were divided into 7 size classes and the following magnetic properties measured: magnetic susceptibility at 2 frequencies, isothermal remanent magnetisation at 3 flux densities, and anhysteristic remanent magnetisation. The sidestream inputs were calculated for each particle size class from the range of magnetic parameters. Significant discrepancies and differences appeared in the resultant sidestream inputs, and this paper outlines the conclusions as to the reliability of the different analytical procedures. It is shown that both the concentration and magnetic grain size of ferrimagnetic minerals in the sediments must be taken into account. Where the difference in magnetic grain size between the upstream and sidestream sediments is small, the use of parameter crossplots or bulked magnetic ratios is generally not appropriate. The use of mass (concentration) magnetic values may be better. The difference in the demands of the crossplots and mass values methods is that crossplots require a wide range of mass magnetic concentrations in each branch, with the upstream and sidestream sediments having different magnetic grain sizes, whereas the mass values procedure does best with a very limited (but different) range of concentrations at the upstream and sidestream branches, but similar magnetic grain sizes. This paper provides an extensive discussion of the estimation technique using different parameter combinations, and uses 3 contrasting confluences as case studies.


Sign in / Sign up

Export Citation Format

Share Document