scholarly journals Assessment of Morpho-Dynamics through Geospatial Techniques within the Padma-Meghna and Ganges-Jamuna River Confluences, Bangladesh

2020 ◽  
Vol 70 (3) ◽  
pp. 127-139
Author(s):  
Md. Yousuf Gazi ◽  
Himel Roy ◽  
Md. Bodruddoza Mia ◽  
Syed Humayun Akhter

Abstract Bangladesh is a low-lying riverine country with the mighty Ganges–Brahmaputra–Meghna (GBM) major river system including their abundant tributaries and distributaries. Land erosion–accretion is a very common phenomenon in this riverine country. This process extensively erodes huge productive landmasses at the river confluence zones every year. The main objective of this study was to understand the confluence morpho-dynamics and identify the vulnerable areas near the Padma–Meghna Confluence (PMC) and Ganges–Jamuna confluence (GJC) due to confluence shifting and erosion–accretion phenomenon of those rivers. The present study utilized multi-temporal Landsat satellite images from 1972 to 2019 approximately ten years of interval. Results showed that the PMC indicated frequent variation in migration trend towards NW from 1972 to 1980, SE from 1980 to 2010, and then reversed towards NW direction from 2010 to 2019. On the other hand, the GJC confluence point moved NW direction (2.37 km) from the year 1972 to 1980, but from 1980 to 2019, the confluence shifted towards the SE direction. Due to the migration dynamics, huge changes happened in width and sand bars area of both confluences. In PMC, confluence width increased remarkably indicating erosive flow during 1972–1980, then progressively shortened up to 2019, indicating accretion. In contrast, GJC shows a significant accretional trend over the 47 years. The sand bar area of the PMC increased about 147.09 km2 throughout the study period. But, GJC shows an opposite scenario where the total sand bar area decreased about 51.02 km2 in the same period. From the vulnerability study of erosion–accretion scenarios, it is predicted that Paturia Ferry Ghat area, Aricha Ferry Ghat area, Arua, Baruria, Dashkin Saljana, Bhadiakola, Masundia, Khanganj and Nyakandi areas near GJC and Chandpur sadar, Srimandi, Sakhua, Bilaspur and char Atra near PMC are highly vulnerable zones. The outputs of the study will enable policy makers to take necessary measures to reduce the erosional severity on both confluence zones and could also provide a basis for proper land management.

2021 ◽  
Author(s):  
Rajnish Kumar Verma ◽  
Kumar Ashwini ◽  
Ajai Singh

Abstract The dynamic nature of meandering poses several challenges in a river. The river Ganga shows severe bank erosion in many of its stretches which creates insecurity to the habitats. In the present study, channel morphology and lateral mid-line migration for 1975 to 2020 in 5 years intervals have been studied. The prediction of lateral mid-line migration from 2020 to 2050 by using multi-temporal Landsat satellite images was made by using the ARIMA model. The river reach was divided into 8 bends and 48 cross-sections were identified. The channel length was observed as 224.35 km in 1975 which reduces to 199.96 km in 2020. A decreasing trend was observed for the mean of channel length and meander ratio, and an increasing trend was noted in the mean of sinuosity ratio and tortuosity ratio. A total of 11 cross-sections showed the rightward shifting and 36 cross-sections showed the leftward shifting. Observed and predicted values showed a good R2 value of 0.90 and 0.89 at CS-24 and CS-25, respectively. The results may be used for planning and management of various river training work and understanding the river system dynamics.


2022 ◽  
Vol 14 (2) ◽  
pp. 747
Author(s):  
Md. Yousuf Gazi ◽  
A. S. M. Maksud Kamal ◽  
Md. Nazim Uddin ◽  
Md. Anwar Hossain Bhuiyan ◽  
Md. Zillur Rahman

Assessing the dynamics of Bhasan Char is very crucial, as the Government of Bangladesh (GoB) has recently selected the island as the accommodation of the FDMN. This article critically evaluates the spatiotemporal morphological variations due to erosion, accretion, and subsurface deformation of the island through multi-temporal geospatial and geophysical data analysis, groundwater quality-quantity, and also determines the nature and rate of changes from 2003 to 2020. This is the first study in this island on which multi-temporal Landsat Satellite Imagery and seismic data have been used with geospatial techniques with Digital Shoreline Analysis System (DSAS) and petrel platform, respectively. The analysis of satellite images suggests that the island first appeared in 2003 in the Bay of Bengal, then progressively evolved to the present stable condition. Significant changes have taken place in the morphological and geographical conditions of the island since its inception. Since 2012, the island has been constantly accreted by insignificant erosion. It receives tidally influenced fluvial sediments from the Ganges-Brahmaputra-Meghna (GBM) river system and the sedimentary accretion, in this case, is higher than the erosion due to relatively weaker wave action and longshore currents. It has gained approximately 68 km2 area, mostly in the northern part and because of erosion in the south. Although the migration of the Bhasan Char was ubiquitous during 2003–2012, it has been concentrated in a small area to the east since 2018. The net shoreline movements (NSM) suggest that the length of the shoreline enlarged significantly by around 39 km in 2020 from its first appearance. Seismic and GPS data clearly indicate that the island is located on the crest of a slowly uplifting low-amplitude anticline, which may result in a stable landform around the island. Based on the analysis of historical data, it has been assessed that the current configuration of Bhasan Char would not be severely affected by 10–15-foot-high cyclone. Therefore, FDMN rehabilitation here might be safer that would be a good example for future geo-environmental assessment for any areas around the world for rehabilitation of human in remote and vulnerable island. The findings of this research will facilitate the government’s decision to rehabilitate FDMN refugees to the island and also contribute to future research in this area.


2020 ◽  
Author(s):  
Alberta Cazzani ◽  
Carlotta Maria Zerbi ◽  
Raffaella Brumana ◽  
Anna Lobovikov-Katz

AbstractHistoric gardens and their related landscapes are often experienced only for their social, aesthetic, and environmental resources, yet their cultural, architectural, and perceptive significance is often ignored. The paper demonstrates how historic and educational values of historic gardens and related landscapes can be revealed by combining historic maps, reading perspective cones, and also applying advanced digital and educational methods and techniques. Historical maps, especially military and cadastral maps, associated with historical iconography, can provide us with a lot of information to study historical gardens and also to define conservation and valorization plans that are related to the history of the site: geomatics tools to georeference and co-relate metric and non-metric historical maps provide growing useful outputs, that can be deployed through the use of Virtual Hubs, boosting the availability of content and the accessibility of open data for policy makers, experts, and non-expert members. Moreover, they can also support heritage education programs providing the opportunity to allow to understand the wealth of sites now simplified, in their system, with different functions and with a transformed context. The study of historic gardens involves the analysis of the landscape in its dynamism and complexity, defines tools that make users more aware of the richness of our heritage.


Author(s):  
Eufemia Tarantino ◽  
Antonio Novelli ◽  
Mariella Aquilino ◽  
Benedetto Figorito ◽  
Umberto Fratino

This paper analyzes two pixel-based classification approaches to support the analysis of land cover transformations based on multitemporal LANDSAT sensor data covering a time space of about 24 years. The research activity presented in this paper was carried out using Lama San Giorgio (Bari, Italy) catchment area as a study case, being this area prone to flooding as proved by its geological and hydrological characteristics and by the significant number of floods occurred in the past. Land cover classes were defined in accordance with on the CN method with the aim of characterizing land use based on attitude to generate runoff. Two different classifiers, i.e. Maximum Likelihood Classifier (MLC) and Java Neural Network Simulator (JavaNNS) models, were compared. The Artificial Neural Networks (ANN) approach was found to be the most reliable and efficient when lacking ground reference data and a priori knowledge on input data distribution.


2020 ◽  
Vol 26 (3) ◽  
pp. 293
Author(s):  
Arif Wibowo ◽  
Dwi Atminarso ◽  
Lee Baumgartner ◽  
Anti Vasemagi

Indonesian freshwater fish diversity is threatened by human activities such as logging, land clearing, pollution and introduction of non-native species. The latter may pose serious threats to endemic freshwater fauna even in relatively pristine and isolated habitats. One such area, West Papua in the island of New Guinea, is one of the least studied regions in the world and a biodiversity hotspot. The Mamberamo River contains the highest proportion of non-native fish compared to other major river systems in New Guinea. To document this, we conducted a field study to validate and further temporally characterise the fish biodiversity to ascertain its current status. Since the last ichthyological survey 15 years ago, we detected two additional non-native species (Leptobarbus melanopterus and Oreochromis niloticus) that have established in the river system. Moreover, our survey revealed that non-native fish are extremely common in the mid reaches of the Mamberamo River, comprising 74% of total catch, with non-native Barbonymus gonionotus (family Cyprinidae) now established as the dominant species. The biomass of non-native B. gonionotus now exceeds that of all native fish combined in the main river channel. These results highlight the serious threat of invasive species in remote regions that support high levels of endemic biodiversity. Plans for containment, prevention through education programmes, and management are urgently required.


Sign in / Sign up

Export Citation Format

Share Document