Statistical Finite Element Analysis of the Mechanical Response of the Intact Human Femur Using a Wide Range of Individual Anatomies

Author(s):  
Mamadou T. Bah ◽  
Reynir Snorrason ◽  
Markus O. Heller
2019 ◽  
Vol 86 ◽  
pp. 149-159 ◽  
Author(s):  
Yekutiel Katz ◽  
Gal Dahan ◽  
Jacob Sosna ◽  
Ilan Shelef ◽  
Evgenia Cherniavsky ◽  
...  

Author(s):  
Md Mohiuddin ◽  
Asma Akther ◽  
Eun Byul Jo ◽  
Hyun Chan Kim ◽  
Jaehwan Kim

The present study investigates a film actuator made with dielectric cellulose acetate films separated by narrow spacers as a means of electrostatic actuation for potential haptic application. Fabrication process for the actuator is explained along with experiments conducted over a wide frequency range of actuation frequency. A valid finite element simulation of the actuator is made on the quarter section of the actuator by using full 3D finite elements. Vibration characteristics such as fundamental natural frequency, mode shape and output velocity in the frequency range for haptic feeling generation are obtained from the finite element analysis and compared with the experimental results. Experimental results demonstrate that the finite element model is practical and effective enough in predicting the vibration characteristics of the actuator for haptic application. The film actuator shows many promising properties like high transparency, wide range of actuation frequency and high vibration velocity for instance.


Proceedings ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 8
Author(s):  
Shinobu Sakai ◽  
Jin-Xing Shi

At present, there are only a few developed pitching machines that can throw a ball with gyro spin. In this study, we aimed to develop a new baseball pitching machine using four rollers, where the rotational speed of each of the four rollers and the crossing angle of the opposite gyro rollers can be controlled optionally to generate an objective gyro spin more efficiently. We also elucidate the throwing mechanism of the developed baseball pitching machine and confirm its performance by finite element analysis. The newly developed pitching machine can throw a baseball with a wide range of speeds from 22.2 m/s (80 km/h) to 44.4 m/s (160 km/h) with all pitch types (fastball, curveball, gyroball, etc.), and the spin axis can be controlled in any designated direction. Moreover, this machine is capable of throwing a baseball with higher accuracy compared to commercially available pitching machines.


2013 ◽  
Vol 554-557 ◽  
pp. 2414-2423 ◽  
Author(s):  
Rachid Djeridi ◽  
Mohand Ould Ouali

Modeling anisotropic behavior of fiber reinforced rubberlike materials is actually of a great interest in many industrials sectors. Indeed, accurately description of the mechanical response and damage of such materials allows the increase of the lifecycle of these materials which generally evolve under several environment conditions. In this paper theoretical study and finite element analysis of anisotropic biomaterials is presented. The mechanical model adopted to achieve this study has been implemented into the finite element code Abaqus using an implicit scheme. This constitutive law has been utilized to perform some numerical simulations. The material parameters of the model have been determined by numerical calibration. One fiber family is considered in this work. Effects of the fiber orientation on the mechanical response and stiffness change of biomaterial is studied. Both the compressible and incompressible states have been taken into account. The results show firstly the capability of the model to reproduce the known results and that optimal fiber orientation can be found.


Author(s):  
A Strozzi ◽  
A Unsworth

Finite element analysis of compliant layered artificial hip joints has been used to study the mechanical response of four different layer thicknesses from 0.5 to 3 mm. The results have been compared with a classical asymptotic model in terms of maximum contact pressure and contact width, and of maximum shear stress at the layer-backing interface and its location. The surface deformations and load capacities have also been compared. The best thickness was found to be 2 mm; though a marginal reduction in stresses would be found in the 3 mm layer, the penetrations would be greater and these might have implications for the fatigue life of the material. A formula for the thickness of the fluid film has been derived on the basis of the inverse hydrodynamic theory and the results show good correlation with existing theories.


2015 ◽  
Vol 0 (0) ◽  
Author(s):  
Wei Zheng ◽  
Jing-Liang Zhou ◽  
Yu-Zhen Ruan

AbstractAs a new type of motor, the traveling wave type rotary ultrasonic motors (TRUM) have a wide range of applications. However, the friction between stator and rotor leads to its poor start reliability, which retards the progress of application of ultrasonic motors. Sometimes TRUMs which are widely used cannot start after storage. Height of tooth of the ultrasonic motor’s stator is one of the factors affecting TRUM’s start stabilizing. In this paper, combined with the ultrasonic motor running mechanism, the factors that affect TRUM’s start reliability are studied. Model of ultrasonic motor stator tooth height is analyzed by finite element analysis (FEA). Five TRUMs with different tooth heights are fabricated and measured. A TRUM with 1.85 mm tooth height can start properly in humidity 90%, but ultrasonic motors with 1.8–1.9 mm tooth height cannot start properly under the same conditions.


Sign in / Sign up

Export Citation Format

Share Document