A Novel Hybrid Multi-objective Optimization Approach for Sustainable Delivery Systems with a Case Study of Izmir

Author(s):  
Hamdi Giray Resat
2017 ◽  
Vol 26 (05) ◽  
pp. 1760016 ◽  
Author(s):  
Shubhashis Kumar Shil ◽  
Samira Sadaoui

This study introduces an advanced Combinatorial Reverse Auction (CRA), multi-units, multiattributes and multi-objective, which is subject to buyer and seller trading constraints. Conflicting objectives may occur since the buyer can maximize some attributes and minimize some others. To address the Winner Determination (WD) problem for this type of CRAs, we propose an optimization approach based on genetic algorithms that we integrate with our variants of diversity and elitism strategies to improve the solution quality. Moreover, by maximizing the buyer’s revenue, our approach is able to return the best solution for our complex WD problem. We conduct a case study as well as simulated testing to illustrate the importance of the diversity and elitism schemes. We also validate the proposed WD method through simulated experiments by generating large instances of our CRA problem. The experimental results demonstrate on one hand the performance of our WD method in terms of several quality measures, like solution quality, run-time complexity and trade-off between convergence and diversity, and on the other hand, it’s significant superiority to well-known heuristic and exact WD techniques that have been implemented for much simpler CRAs.


2021 ◽  
Vol 9 (5) ◽  
pp. 478
Author(s):  
Hao Chen ◽  
Weikun Li ◽  
Weicheng Cui ◽  
Ping Yang ◽  
Linke Chen

Biomimetic robotic fish systems have attracted huge attention due to the advantages of flexibility and adaptability. They are typically complex systems that involve many disciplines. The design of robotic fish is a multi-objective multidisciplinary design optimization problem. However, the research on the design optimization of robotic fish is rare. In this paper, by combining an efficient multidisciplinary design optimization approach and a novel multi-objective optimization algorithm, a multi-objective multidisciplinary design optimization (MMDO) strategy named IDF-DMOEOA is proposed for the conceptual design of a three-joint robotic fish system. In the proposed IDF-DMOEOA strategy, the individual discipline feasible (IDF) approach is adopted. A novel multi-objective optimization algorithm, disruption-based multi-objective equilibrium optimization algorithm (DMOEOA), is utilized as the optimizer. The proposed MMDO strategy is first applied to the design optimization of the robotic fish system, and the robotic fish system is decomposed into four disciplines: hydrodynamics, propulsion, weight and equilibrium, and energy. The computational fluid dynamics (CFD) method is employed to predict the robotic fish’s hydrodynamics characteristics, and the backpropagation neural network is adopted as the surrogate model to reduce the CFD method’s computational expense. The optimization results indicate that the optimized robotic fish shows better performance than the initial design, proving the proposed IDF-DMOEOA strategy’s effectiveness.


Sign in / Sign up

Export Citation Format

Share Document