Stepwise Transfer of Domain Knowledge for Computer-Aided Diagnosis in Pathology Using Deep Neural Networks

Author(s):  
Jia Qu ◽  
Nobuyuki Hiruta ◽  
Kensuke Terai ◽  
Hirokazu Nosato ◽  
Masahiro Murakawa ◽  
...  
2020 ◽  
Vol 10 (7) ◽  
pp. 2488 ◽  
Author(s):  
Muhammad Naseer Bajwa ◽  
Kaoru Muta ◽  
Muhammad Imran Malik ◽  
Shoaib Ahmed Siddiqui ◽  
Stephan Alexander Braun ◽  
...  

Propensity of skin diseases to manifest in a variety of forms, lack and maldistribution of qualified dermatologists, and exigency of timely and accurate diagnosis call for automated Computer-Aided Diagnosis (CAD). This study aims at extending previous works on CAD for dermatology by exploring the potential of Deep Learning to classify hundreds of skin diseases, improving classification performance, and utilizing disease taxonomy. We trained state-of-the-art Deep Neural Networks on two of the largest publicly available skin image datasets, namely DermNet and ISIC Archive, and also leveraged disease taxonomy, where available, to improve classification performance of these models. On DermNet we establish new state-of-the-art with 80% accuracy and 98% Area Under the Curve (AUC) for classification of 23 diseases. We also set precedence for classifying all 622 unique sub-classes in this dataset and achieved 67% accuracy and 98% AUC. On ISIC Archive we classified all 7 diseases with 93% average accuracy and 99% AUC. This study shows that Deep Learning has great potential to classify a vast array of skin diseases with near-human accuracy and far better reproducibility. It can have a promising role in practical real-time skin disease diagnosis by assisting physicians in large-scale screening using clinical or dermoscopic images.


Author(s):  
Kamyab Keshtkar

As a relatively high percentage of adenoma polyps are missed, a computer-aided diagnosis (CAD) tool based on deep learning can aid the endoscopist in diagnosing colorectal polyps or colorectal cancer in order to decrease polyps missing rate and prevent colorectal cancer mortality. Convolutional Neural Network (CNN) is a deep learning method and has achieved better results in detecting and segmenting specific objects in images in the last decade than conventional models such as regression, support vector machines or artificial neural networks. In recent years, based on the studies in medical imaging criteria, CNN models have acquired promising results in detecting masses and lesions in various body organs, including colorectal polyps. In this review, the structure and architecture of CNN models and how colonoscopy images are processed as input and converted to the output are explained in detail. In most primary studies conducted in the colorectal polyp detection and classification field, the CNN model has been regarded as a black box since the calculations performed at different layers in the model training process have not been clarified precisely. Furthermore, I discuss the differences between the CNN and conventional models, inspect how to train the CNN model for diagnosing colorectal polyps or cancer, and evaluate model performance after the training process.


1995 ◽  
Author(s):  
Akira Hasegawa ◽  
Chris Y. Wu ◽  
Matthew T. Freedman ◽  
Seong K. Mun

Sign in / Sign up

Export Citation Format

Share Document