scholarly journals Using Low-Cost “Garage Band” Recording Technology for Acquiring High Resolution High-Speed Data

Author(s):  
Randall Wetherington ◽  
Gregory Sheets ◽  
Tom Karnowski ◽  
Ryan Kerekes ◽  
Michael Vann ◽  
...  
2021 ◽  
Vol 21 (4) ◽  
pp. 1-23
Author(s):  
Bin Yuan ◽  
Chen Lin ◽  
Deqing Zou ◽  
Laurence Tianruo Yang ◽  
Hai Jin

The rapid development of the Internet of Things has led to demand for high-speed data transformation. Serving this purpose is the Tactile Internet, which facilitates data transfer in extra-low latency. In particular, a Tactile Internet based on software-defined networking (SDN) has been broadly deployed because of the proven benefits of SDN in flexible and programmable network management. However, the vulnerabilities of SDN also threaten the security of the Tactile Internet. Specifically, an SDN controller relies on the network status (provided by the underlying switches) to make network decisions, e.g., calculating a routing path to deliver data in the Tactile Internet. Hence, the attackers can compromise the switches to jeopardize the SDN and further attack Tactile Internet systems. For example, an attacker can compromise switches to launch distributed denial-of-service attacks to overwhelm the SDN controller, which will disrupt all the applications in the Tactile Internet. In pursuit of a more secure Tactile Internet, the problem of abnormal SDN switches in the Tactile Internet is analyzed in this article, including the cause of abnormal switches and their influences on different network layers. Then we propose an approach that leverages the messages sent by all switches to identify abnormal switches, which adopts a linear structure to store historical messages at a relatively low cost. By mapping each flow message to the flow establishment model, our method can effectively identify malicious SDN switches in the Tactile Internet and thus enhance its security.


2012 ◽  
Vol 468-471 ◽  
pp. 920-923
Author(s):  
Ya Ping Bao ◽  
Li Liu ◽  
Yuan Wang ◽  
Qian Song

This paper introduced a fast fingerprint identification system based on TMS320VC5416 DSP chip and MBF200 solidity fingerprint sensor. It precipitates fingerprint identification device developing into the direction of miniaturization, embedded and automatic.It recommends fingerprint identification system hardware and software design and the main system processing flow, aim at fingerprint identification arithmetic, the influence of system operation speed is being researched at the same time. High-speed data acquisition system is been built in order to achieve a DSP fingerprint identification system with high efficiency and low cost.


2013 ◽  
Vol 332 ◽  
pp. 119-123
Author(s):  
Dorina Purcaru ◽  
Anca Purcaru

The interface presented in this paper performs a synchronized sampling of all eight common-mode or differential analog inputs with a high sampling rate. This is a low cost interface, entirely controlled by the PC104 CPU. The paper is focused on design and operation aspects of the synchronized analog-to-digital conversion module. This interface is recommended for high speed data acquisition systems and finds its utility in energetic systems, for monitoring the power quality and for recording different specific transient events. Some programmable electronic modules which perform analog and digital signal acquisition in energetic systems already contain a PC104 interface with synchronized sampling of analog inputs; some experimental results are also presented in this paper.


2013 ◽  
Vol 325-326 ◽  
pp. 926-929 ◽  
Author(s):  
Dorina Purcaru ◽  
Cornelia Gordan ◽  
Romulus Reiz ◽  
Anca Purcaru

The interface presented in this paper is recommended for high speed data acquisition systems; it performs a synchronized sampling of all common-mode or differential analog inputs with a high sampling rate. This is a low cost interface, entirely controlled by the PC104 CPU. Programmable electronic modules that contain such PC104 interfaces can be found running in the energetic system from Romania; these dedicated equipments perform the analog and digital signal acquisition for monitoring and recording different specific transient events. Some experimental results obtained using the disturbance monitoring device PC-08/104 are also presented in this paper.


Sign in / Sign up

Export Citation Format

Share Document