4 From Genetics to Molecular Oscillations: The Circadian Clock in Neurospora crassa

2020 ◽  
pp. 77-103
Author(s):  
Meaghan S. Jankowski ◽  
Zachary A. Chase ◽  
Jennifer M. Hurley
Genetics ◽  
1976 ◽  
Vol 82 (1) ◽  
pp. 9-17 ◽  
Author(s):  
Jerry F Feldman ◽  
Marian N Hoyle

ABSTRACT A fourth mutant of Neurospora crassa, designated frq-4, has been isolated in which the period length of the circadian conidiation rhythm is shortened to 19.3 ± 0.3 hours. This mutant is tightly linked to the three previously isolated frq mutants, and all four map to the right arm of linkage group VII about 10 map units from the centromere. Complementation tests suggest, but do not prove, that all four mutations are allelic, since each of the four mutants is co-dominant with the frq  + allele—i.e., heterokaryons have period lengths intermediate between the mutant and wild-type—and since heterokaryons between pairs of mutants also have period lengths intermediate between those of the two mutants.


Genetics ◽  
2001 ◽  
Vol 159 (2) ◽  
pp. 537-543
Author(s):  
Louis W Morgan ◽  
Jerry F Feldman

Abstract We identified a series of epistatic and synergistic interactions among the circadian clock mutations of Neurospora crassa that indicate possible physical interactions among the various clock components encoded by these genes. The period-6 (prd-6) mutation, a short-period temperature-sensitive clock mutation, is epistatic to both the prd-2 and prd-3 mutations. The prd-2 and prd-3 long-period mutations show a synergistic interaction in that the period length of the double mutant strain is considerably longer than predicted. In addition, the prd-2 prd-3 double mutant strain also exhibits overcompensation to changes in ambient temperature, suggesting a role in the temperature compensation machinery of the clock. The prd-2, prd-3, and prd-6 mutations also show significant interactions with the frq7 long-period mutation. These results suggest that the gene products of prd-2, prd-3, and prd-6 play an important role in both the timing and temperature compensation mechanisms of the circadian clock and may interact with the FRQ protein.


2005 ◽  
Vol 33 (5) ◽  
pp. 949-952 ◽  
Author(s):  
N. Price-Lloyd ◽  
M. Elvin ◽  
C. Heintzen

The metronomic predictability of the environment has elicited strong selection pressures for the evolution of endogenous circadian clocks. Circadian clocks drive molecular and behavioural rhythms that approximate the 24 h periodicity of our environment. Found almost ubiquitously among phyla, circadian clocks allow preadaptation to rhythms concomitant with the natural cycles of the Earth. Cycles in light intensity and temperature for example act as important cues that couple circadian clocks to the environment via a process called entrainment. This review summarizes our current understanding of the general and molecular principles of entrainment in the model organism Neurospora crassa, a simple eukaryote that has one of the best-studied circadian systems and light-signalling pathways.


FEBS Letters ◽  
2011 ◽  
Vol 585 (10) ◽  
pp. 1461-1466 ◽  
Author(s):  
A.C.R. Diernfellner ◽  
T. Schafmeier

2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Jacqueline F. Pelham ◽  
Jay C. Dunlap ◽  
Jennifer M. Hurley

Abstract Introduction The circadian circuit, a roughly 24 h molecular feedback loop, or clock, is conserved from bacteria to animals and allows for enhanced organismal survival by facilitating the anticipation of the day/night cycle. With circadian regulation reportedly impacting as high as 80% of protein coding genes in higher eukaryotes, the protein-based circadian clock broadly regulates physiology and behavior. Due to the extensive interconnection between the clock and other cellular systems, chronic disruption of these molecular rhythms leads to a decrease in organismal fitness as well as an increase of disease rates in humans. Importantly, recent research has demonstrated that proteins comprising the circadian clock network display a significant amount of intrinsic disorder. Main body In this work, we focus on the extent of intrinsic disorder in the circadian clock and its potential mechanistic role in circadian timing. We highlight the conservation of disorder by quantifying the extent of computationally-predicted protein disorder in the core clock of the key eukaryotic circadian model organisms Drosophila melanogaster, Neurospora crassa, and Mus musculus. We further examine previously published work, as well as feature novel experimental evidence, demonstrating that the core negative arm circadian period drivers FREQUENCY (Neurospora crassa) and PERIOD-2 (PER2) (Mus musculus), possess biochemical characteristics of intrinsically disordered proteins. Finally, we discuss the potential contributions of the inherent biophysical principals of intrinsically disordered proteins that may explain the vital mechanistic roles they play in the clock to drive their broad evolutionary conservation in circadian timekeeping. Conclusion The pervasive conservation of disorder amongst the clock in the crown eukaryotes suggests that disorder is essential for optimal circadian timing from fungi to animals, providing vital homeostatic cellular maintenance and coordinating organismal physiology across phylogenetic kingdoms. Graphical abstract


2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Linda Lauinger ◽  
Axel Diernfellner ◽  
Sebastian Falk ◽  
Michael Brunner

1996 ◽  
Vol 93 (23) ◽  
pp. 13096-13101 ◽  
Author(s):  
D. Bell-Pedersen ◽  
M. L. Shinohara ◽  
J. J. Loros ◽  
J. C. Dunlap

2008 ◽  
Vol 68 (2) ◽  
pp. 255-262 ◽  
Author(s):  
Michael Brunner ◽  
Krisztina Káldi

Sign in / Sign up

Export Citation Format

Share Document