scholarly journals Digital Link—B

Author(s):  
Jean Walrand

AbstractChapter 7 explained the detection and hypothesis testing problems, Huffman codes and the situation where errors are independent and Gaussian. In this chapter, we prove the optimality of the Huffman code in Sect. 8.1 and the Neyman–Pearson Theorem in Sect. 8.2. Section 8.3 discusses the theory of jointly Gaussian random variables that is used to analyze the modulation schemes of Sect. 7.5 . Section 8.4 uses the results on jointly Gaussian random variables to explain hypothesis tests that arise when analyzing data. That section discusses the chi-squared test and the F-test. Section 8.5 is devoted to the LDPC codes that are widely used in high-speed communication links. These codes augment a group of bits to be transmitted over a noisy channel with additional bits computed from those in the group. When it receives the bits, when the augmented bits are not consistent, the receiver attempts to determine the bits that are most likely to have been corrupted by noise.

Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5027
Author(s):  
Je-An Kim ◽  
Joon-Ho Lee

Cross-eye gain in cross-eye jamming systems is highly dependent on amplitude ratio and the phase difference between jammer antennas. It is well known that cross-eye jamming is most effective for the amplitude ratio of unity and phase difference of 180 degrees. It is assumed that the instabilities in the amplitude ratio and phase difference can be modeled as zero-mean Gaussian random variables. In this paper, we not only quantitatively analyze the effect of amplitude ratio instability and phase difference instability on performance degradation in terms of reduction in cross-eye gain but also proceed with analytical performance analysis based on the first order and second-order Taylor expansion.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Festus Idowu Oluwajobi ◽  
Nguyen Dong-Nhat ◽  
Amin Malekmohammadi

AbstractIn this paper, the performance of a novel multilevel signaling based on Manchester code namely four-level Manchester Coding (4-MC) technique is investigated for next generation high-speed optical fiber communication links. The performance of 4-MC is studied and compared with conventional Manchester modulation and four-level pulse amplitude modulation (4-PAM) formats in terms of receiver sensitivity, spectral efficiency and dispersion tolerance at the bit rate of 40 Gb/s. The bit error rate (BER) calculation model for the proposed multilevel scheme has also been developed. The calculated receiver sensitivity and the chromatic dispersion tolerance at the BER of 10–9 of the proposed scheme are −22 dBm and 67.5 ps/nm, respectively. It is observed that, 4-MC scheme is superior in comparison to 4-PAM by 3.5 dB in terms of receiver sensitivity in back-to-back scenario. Therefore, the proposed scheme can be considered as an alternative to current 4-PAM system.


Author(s):  
Mina Ketan Mahanti ◽  
Amandeep Singh ◽  
Lokanath Sahoo

We have proved here that the expected number of real zeros of a random hyperbolic polynomial of the formy=Pnt=n1a1cosh⁡t+n2a2cosh⁡2t+⋯+nnancosh⁡nt, wherea1,…,anis a sequence of standard Gaussian random variables, isn/2+op(1). It is shown that the asymptotic value of expected number of times the polynomial crosses the levely=Kis alson/2as long asKdoes not exceed2neμ(n), whereμ(n)=o(n). The number of oscillations ofPn(t)abouty=Kwill be less thann/2asymptotically only ifK=2neμ(n), whereμ(n)=O(n)orn-1μ(n)→∞. In the former case the number of oscillations continues to be a fraction ofnand decreases with the increase in value ofμ(n). In the latter case, the number of oscillations reduces toop(n)and almost no trace of the curve is expected to be present above the levely=Kifμ(n)/(nlogn)→∞.


1999 ◽  
Author(s):  
Kyle B. Miller ◽  
Tim O'Connor ◽  
Donald A. Thompson ◽  
John Rizo ◽  
Robert W. Kaliski

1980 ◽  
Vol 32 (6) ◽  
pp. 483-489 ◽  
Author(s):  
V. V. Buldygin ◽  
Yu. V. Kozachenko

Sign in / Sign up

Export Citation Format

Share Document