scholarly journals Solving Non-linear Elasticity Problems by a WLS High Order Continuation

Author(s):  
Oussama Elmhaia ◽  
Youssef Belaasilia ◽  
Bouazza Braikat ◽  
Noureddine Damil
2005 ◽  
Vol 6 (3) ◽  
pp. 143-149 ◽  
Author(s):  
Jonathan P. Whiteley

Non-linear elasticity theory may be used to calculate the coordinates of a deformed body when the coordinates of the undeformed, stress-free body are known. In some situations, such as one of the steps in the location of tumours in a breast, the coordinates of the deformed body are known and the coordinates of the undeformed body are to be calculated, i.e. we require the solution of the inverse problem. Other than for situations where classical linear elasticity theory may be applied, the simple approach for solving the inverse problem of reversing the direction of gravity and modelling the deformed body as an undeformed body does not give the correct solution. In this study, we derive equations that may be used to solve inverse problems. The solution of these equations may be used for a wide range of inverse problems in non-linear elasticity.


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1799
Author(s):  
Irene Gómez-Bueno ◽  
Manuel Jesús Castro Díaz ◽  
Carlos Parés ◽  
Giovanni Russo

In some previous works, two of the authors introduced a technique to design high-order numerical methods for one-dimensional balance laws that preserve all their stationary solutions. The basis of these methods is a well-balanced reconstruction operator. Moreover, they introduced a procedure to modify any standard reconstruction operator, like MUSCL, ENO, CWENO, etc., in order to be well-balanced. This strategy involves a non-linear problem at every cell at every time step that consists in finding the stationary solution whose average is the given cell value. In a recent paper, a fully well-balanced method is presented where the non-linear problems to be solved in the reconstruction procedure are interpreted as control problems. The goal of this paper is to introduce a new technique to solve these local non-linear problems based on the application of the collocation RK methods. Special care is put to analyze the effects of computing the averages and the source terms using quadrature formulas. A general technique which allows us to deal with resonant problems is also introduced. To check the efficiency of the methods and their well-balance property, they have been applied to a number of tests, ranging from easy academic systems of balance laws consisting of Burgers equation with some non-linear source terms to the shallow water equations—without and with Manning friction—or Euler equations of gas dynamics with gravity effects.


1996 ◽  
Vol 63 (2) ◽  
pp. 278-286 ◽  
Author(s):  
A. Nagarajan ◽  
S. Mukherjee ◽  
E. Lutz

This paper presents a novel variant of the boundary element method, here called the boundary contour method, applied to three-dimensional problems of linear elasticity. In this work, the surface integrals on boundary elements of the usual boundary element method are transformed, through an application of Stokes’ theorem, into line integrals on the bounding contours of these elements. Thus, in this formulation, only line integrals have to be numerically evaluated for three-dimensional elasticity problems—even for curved surface elements of arbitrary shape. Numerical results are presented for some three-dimensional problems, and these are compared against analytical solutions.


Sign in / Sign up

Export Citation Format

Share Document