Learning of Convolutional Neural Networks in the Tasks of Land Use Digitization Based on CUDA Technologies

Author(s):  
Pavel V. Tereliansky ◽  
Alexey F. Rogachev ◽  
Elena V. Melikhova
2019 ◽  
Vol 11 (6) ◽  
pp. 690 ◽  
Author(s):  
Shengjie Liu ◽  
Zhixin Qi ◽  
Xia Li ◽  
Anthony Yeh

Object-based image analysis (OBIA) has been widely used for land use and land cover (LULC) mapping using optical and synthetic aperture radar (SAR) images because it can utilize spatial information, reduce the effect of salt and pepper, and delineate LULC boundaries. With recent advances in machine learning, convolutional neural networks (CNNs) have become state-of-the-art algorithms. However, CNNs cannot be easily integrated with OBIA because the processing unit of CNNs is a rectangular image, whereas that of OBIA is an irregular image object. To obtain object-based thematic maps, this study developed a new method that integrates object-based post-classification refinement (OBPR) and CNNs for LULC mapping using Sentinel optical and SAR data. After producing the classification map by CNN, each image object was labeled with the most frequent land cover category of its pixels. The proposed method was tested on the optical-SAR Sentinel Guangzhou dataset with 10 m spatial resolution, the optical-SAR Zhuhai-Macau local climate zones (LCZ) dataset with 100 m spatial resolution, and a hyperspectral benchmark the University of Pavia with 1.3 m spatial resolution. It outperformed OBIA support vector machine (SVM) and random forest (RF). SVM and RF could benefit more from the combined use of optical and SAR data compared with CNN, whereas spatial information learned by CNN was very effective for classification. With the ability to extract spatial features and maintain object boundaries, the proposed method considerably improved the classification accuracy of urban ground targets. It achieved overall accuracy (OA) of 95.33% for the Sentinel Guangzhou dataset, OA of 77.64% for the Zhuhai-Macau LCZ dataset, and OA of 95.70% for the University of Pavia dataset with only 10 labeled samples per class.


2021 ◽  
Vol 13 (22) ◽  
pp. 4630
Author(s):  
Ji Won Suh ◽  
Eli Anderson ◽  
William Ouimet ◽  
Katharine M. Johnson ◽  
Chandi Witharana

Advanced deep learning methods combined with regional, open access, airborne Light Detection and Ranging (LiDAR) data have great potential to study the spatial extent of historic land use features preserved under the forest canopy throughout New England, a region in the northeastern United States. Mapping anthropogenic features plays a key role in understanding historic land use dynamics during the 17th to early 20th centuries, however previous studies have primarily used manual or semi-automated digitization methods, which are time consuming for broad-scale mapping. This study applies fully-automated deep convolutional neural networks (i.e., U-Net) with LiDAR derivatives to identify relict charcoal hearths (RCHs), a type of historical land use feature. Results show that slope, hillshade, and Visualization for Archaeological Topography (VAT) rasters work well in six localized test regions (spatial scale: <1.5 km2, best F1 score: 95.5%), but also at broader extents at the town level (spatial scale: 493 km2, best F1 score: 86%). The model performed best in areas with deciduous forest and high slope terrain (e.g., >15 degrees) (F1 score: 86.8%) compared to coniferous forest and low slope terrain (e.g., <15 degrees) (F1 score: 70.1%). Overall, our results contribute to current methodological discussions regarding automated extraction of historical cultural features using deep learning and LiDAR.


Author(s):  
C. Yang ◽  
F. Rottensteiner ◽  
C. Heipke

<p><strong>Abstract.</strong> Land use and land cover are two important variables in remote sensing. Commonly, the information of land use is stored in geospatial databases. In order to update such databases, we present a new approach to determine the land cover and to classify land use objects using convolutional neural networks (CNN). High-resolution aerial images and derived data such as digital surface models serve as input. An encoder-decoder based CNN is used for land cover classification. We found a composite including the infrared band and height data to outperform RGB images in land cover classification. We also propose a CNN-based methodology for the prediction of land use label from the geospatial databases, where we use masks representing object shape, the RGB images and the pixel-wise class scores of land cover as input. For this task, we developed a two-branch network where the first branch considers the whole area of an image, while the second branch focuses on a smaller relevant area. We evaluated our methods using two sites and achieved an overall accuracy of up to 89.6% and 81.7% for land cover and land use, respectively. We also tested our methods for land cover classification using the Vaihingen dataset of the ISPRS 2D semantic labelling challenge and achieved an overall accuracy of 90.7%.</p>


Identifying the physical aspect of the earth’s surface (Land cover) and also how we exploit the land (Land use) is a challenging problem in environment monitoring and much of other subdomains. One of the most efficient ways to do this is through Remote Sensing (analyzing satellite images). For such classification using satellite images, there exist many algorithms and methods, but they have several problems associated with them, such as improper feature extraction, poor efficiency, etc. Problems associated with established land-use classification methods can be solved by using various optimization techniques with the Convolutional neural networks(CNN). The structure of the Convolutional neural network model is modified to improve the classification performance, and the overfitting phenomenon that may occur during training is avoided by optimizing the training algorithm. This work mainly focuses on classifying land types such as forest lands, bare lands, residential buildings, Rivers, Highways, cultivated lands, etc. The outcome of this work can be further processed for monitoring in various domains.


Author(s):  
A. Gujrathi ◽  
C. Yang ◽  
F. Rottensteiner ◽  
K. M. Buddhiraju ◽  
C. Heipke

Abstract. Land use is an important variable in remote sensing which describes the functions carried out on a piece of land in order to obtain benefits and is especially useful to the personnel working in the fields of urban management and planning. The land use information is maintained by national mapping agencies in geo-spatial databases. Commonly, land use data is stored in the form of polygon objects; the label of the object indicates land use. The main goal of classification of land use objects is to update an existing database in an automatic process. Recently, Convolutional Neural Networks (CNN) have been widely used to tackle this task utilizing high resolution aerial images (and derived data such as digital surface model). One big challenge classifying polygons is to deal with the large variation in their geometrical extent. For this challenge, we adopt the method of Yang et al. (2019) to decompose polygons into regular patches of fixed size. The decomposition leads to two sets of polygons: small and large, where the former suffers from a lower identification rate. In this paper, we propose CNN methods which incorporate dense connectivity and integrate it with intermediate information via global average pooling to improve land use classification, mainly focusing on small polygons. We present different network variants by incorporating intermediate information via global average pooling from different stages of the network. We test our methods on two sites; our experiments show that the dense connectivity and integration of intermediate information has a positive effect not only on the classification accuracy on the whole but also on the identification of small polygons.


Sign in / Sign up

Export Citation Format

Share Document